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ABSTRACT 

A deterministic version of the It6 calculus is presented. We consider a 
model Yt = H(Nt, t) with a deterministic Brownian Nt and an unknown 
function H. We predict Yc from the observation {]~;t C [a,b]}, where 
a < b < c. We prove that there exists an estimator Yt based on the 
observation such that E[(Yt - Yc) 2] --- O((c - 5) 2) as c $ 5. 

1. I n t r o d u c t i o n  

Deterministic Brownian motions are stochastic processes with noncorrelated,  

s ta t ionary  and strict ly ergodic increments having 0-entropy and 0-expectation. 

The  self-similarity of  order 1/2 follows from these properties. Such processes 

have a lot of variety and have different properties. This is not  the case of  the 

Brownian mot ion where the process is characterized as a process with s ta t ionary  

and independent increments with 0-expectat ion and s tandard  variance. 

Among  the deterministic Brownian motions,  the simplest one is the N-process 

(Nt;  t E R)  which is defined by the au thor  in Example  8 of  [K]. I t  comes from a 

piecewise linear function called the Nl- funct ion  (in Figure 1). I t  is t ime reversible. 

The aim of this paper  is to develop stochastic analysis based on the N-process.  

We consider a process Yt = H ( N , ,  t), where the function H ( x ,  s) is twice continu- 

ously differentible in x and once continuously differentible in s and Hx (x, s) > 0. 

The function H is considered completely unknown except for these properties. 
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We want to predict the value Yc from the observation Y j  := {Yt; t E J}, where 

J = [a, b] and a < b < c. We prove in Theorem 9 that  there exists an estimator 

l)c such that 

(1) E[(I~ - Yc) 2] = o((c - b) 2) + O k b - a / 

as c $ b with the following C(b) as the constant in O( ): 

(2) 6(5) := 50 sup I x(x,5)l 2 
Ixl<lbll/2 

One of the motivations of our paper is given by Benoit B. Mandelbrot [2], 

who mentioned that  the simulation of the stock market by the Brownian motion 

contains too much randomness. An actual market has a strong negative corre- 

lation between the fluctuations of price on a day and the next day. He suggests 

using the N-shaped function as the base of the sinmlation. 

Our model has a lot of similarities to the It5 process. For example, we have an 

It5 formula (Theorem 4). Nevertheless, there is a big difference between them. 

Our process has 0-entropy while the It5 process has co-entropy. Therefore, we 

have a much better possibility of predicting the future. Theoretically, if we have 

complete information about the function H,  and complete data of Yt in the past, 

we should be able to predict the future without error. But the actual setting 

is with the unknown function H and the limited observation Yt for a bounded 

interval J .  The best we can do is order O ( ( c -  5) 2) in the above estimate (1), 

and O(c  - b) in the case of an It6 process. 

A sample path from an N-process repeats the Nl-function in various scales. 

The main idea for the prediction, called s y n c h r o n i z a t i o n ,  is to find out the 

positions and the scales of the appearances of Nl-function in the sample path. An 

appearance of the Nl-function in a sample path is a part of bigger Nl-functions 

while containing smaller ones. Along the 3 line segments in an appearance of the 

Nl-function, the sample path either increases at the first part, then decreases and 

increases, or decreases at the first part, then increases and decreases. Thus, it 

has a strong correlation along the synchronized intervals, while the process itself 

has noncorrelated increments. 

Another motivation is to create a sample path of Brownian motion in a de- 

terministic way without using a random mechanism. Our N-process is strictly 

ergodic so that any chosen path realizes probablistic properties of the process. 

We don't  need a randomization procedure but just take one, for example, the 

N~-function itself. Of course, it is not exactly like a path of the Brownian mo- 

tion, but shares the quadratic structure with Brownian motion. If we take a 
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derivative in some sense of the sample path, we get a white noise. Thus, our 

N-process provides a method of generating a random mlmber. 

2. N - p r o c e s s  

We consider the N - p r o c e s s  (Nt; t E R), which is the stochastic process defined 

in Example 8 of [1] for c~ -- 1/2. We repeat the definition in a slightly different 

way as follows. 

Define a continuous piecewise linear function N: (see Figure 1) on the interval 

[0, 1] by 
3x, 0 < x < 4/9, 

N : ( x ) =  - 3 x + 2 ,  4 / 9 < x < 5 / 9 ,  
3 : 5/9 < x < 1. ~ x -  : ,  

Let N2 be the continuous piecewise linear function on [0, 1] obtained by 

replacing 3 line segments in N1 by self-affine images of N: or -N1  keeping the 2 

end points fixed, that is, 

5N:(~x) ,  0 < z < 4/9, 
N 2 ( x )  = 2 : 5 - s N : ( 9 x - 4 ) ,  4 / 9 < x < 5 / 9 ,  

I 2 9 5 5 + S N : ( ~  x - ~ ) ,  5 / 9 < x < 1 .  

Let N3 be the the continuous piecewise linear function on [0, 1] obtained by 

replacing 9 line segments in N2 by self-affine images of N: or -N 1  as before. 

In the same way, we obtain N~ from Nn-1 for n = 4, 5 , . . . .  For covenience, we 

define No by No(t) = t for any t C [0, 1]. 

We prove that the function Nn converges pointwise as n tends to infinity to a 

continuous function, say No~ on [0, 1]. Let a, b C [0, 1] with a < b. The interval 

[a, b] is called a s y n c h r o n i z e d  in t e rva l  o f  level  n if (a, Nn (a))(b, N,~ (b)) is one of 

the 3" line segments consisting of the graph of the function Nn for n = 0, 1, 2 , . . . .  

In this case, we have for any m > n that 

1. Nm(a) = Nn(a) and Nm(b) = Nn(b), 

2. Nn(a) < Win(t) < Nn(b) or Nn(a) > Nm(t)  > Nn(b) for any t E (a,b), 

3. INn(b) - N,~(a)l = Ib - al :/2, and 

4. b - a =  (4)i  ( ~ ) " - '  f o r s o m e i = O , l , . . . , n .  

Take any t E [0, 1]. For any e > 0, there exists n and a synchronized interval 

of level n, say [a, b] with t C [a, b] and [b - a I < e 2. Then for any m, ra' _> n, 

INto(t) - Nm,(t)l  < IN,~(b) - N,,(a)l = Ib - al:/2 < :. 

Thus, N,~(t) converges as m --+ co. The limit will be denoted by No~(t). 
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Let us prove the continuity of the function Noo. Take any s, t E [0, 1] with 

0 < t - s < (1/9) n for some n = 1,2 , . . . .  Then there exists 2 neighboring 

synchronized intervals of level n, say [a, b] and [b, c] such that  [s, t] C [a, c]. Then 

we have 
INoo(t) - Noo(s)]  <_)N,,(b) - N.(a)l  + INn(c) - N.(b)l 

=lb- al~/2 + lc- bl'/2 <_ 2(~) "/2 

Thus, the function Noo is continuous. 

Z/3 

4/9 5/9 

1 1 

2/3=(4/9) ~, 

,3/V  
0 

2/3-1/'3=(5/9-4/9) tr2 1_1/3=(1_5/9) i/2 

/ 

I I 

0 

j /v  ¢ 

Figure 1. Ni, N2, N3 and No~. 

We define a function N ~  : R --+ R which is an extension of Noo by 

{ 01~ ~ t < 0, 
9 ~ ( t )  = (t), o < t < 1, 

t ~ l .  

Now we randomize N ~  to get the N-process (Nt; t E R). 
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Let 0 be the set of continuous functions w: R --+ R with w(0) = 0. We 

consider O as a topological space with the compact open topology, that  is, wn E O 

converges to w E O as n tends to infinity if and only if wn(t) converges to w(t) 
uniformly on each bounded set of t. For w E 0 and s E R,  we define the addi t ion  

w + s E O (see Figure 2) by 

+ s ) ( t )  = + t )  - 

V 

1 j '  

i "y' 

2(~ +s) 

Figure 2. w, w + s and 2(w + s). 

For w E O and A E R+ ,  we define the mult ip l icat ion Aw E O by 

(X,~)(t) = A1/2w(A-l t ) .  

Choose s E [0, 1] randomly according to the Lebesgue measure on [0, 1] and 

define ~ r  + s. Now take L > 0 and choose A E [0, L] randomly according to the 

normalized Lebesgue measure on [0, L] independently of s and define e ~ (/~-oo + s). 
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Now let L tend to infinity. We prove in Theorem 1 that the distribution of the 

random variable e~(No + s) on O converges weakly (i.e. in the weak* sense) as 

L tends to infinity. Let P be the limiting distribution on O. Then the stochastic 

process (Nt; t E R) on the probability space (O, P)  is defined by Nt(w) = w(t) 
for any w E O and t E R, which is called the N-process .  Let (90 be the 

topological support of the measure P. 

Let [a, b] be a synchronized interval of level i. We call it increas ing  if No(a )  < 

N~o(b) and dec reas ing  if No(a)  > No(b).  We call it left ,  m i d d l e  or r igh t  if 
there exists a synchronized interval [u, v] such that [a, b] is equal to [u, u'], [u', v'] 

or [v', v], respectively, where we put u' = (hu + 4v)/9 and v' = (4u + 5v)/9. For 

example, [0, 1] is the only synchronized interval of level 0, which is increasing. 

There are 3 synchronized intervals of level 1, namely [0, 4/9], [4/9, 5/9], [5/9, 1], 

which are increasing, decreasing and increasing, respectively and left, middle and 

right, respectively. 

Let X = e~(No + s) for some s E [0, 1] and A E [0, oc). Note that 

e ~ = ( x ( ~ )  - x ( - ~ ) )  2, 

1 - s =e -~ min{t; X(t )  = X(c~)}, 

so that  )~ and s are determined by X. Let [a, b] be a synchronized interval. Then 

we say that [(a - s)e x, (b - s)e ~] is a synch ron i zed  in te rva l  of  X. We also say 

that  it is increasing, decreasing, left, middle or right synchronized interval of X 

if In, b] is so. 

LEMMA 1: (1) Nee(t) +/~ro¢(1 - t) = 1 for any t E R.  
(2) Let [a, b] be a synchronized interval. Then we have 

N o ( t ) -  No(a)  = ~ ( b -  a)l/2N~(tb~_aa) 

for any t E [a, b], where ~ is 1 or - 1  according as the interval [a, b] is increasing 
or decreasing, respectively. 

(3) There exists a constant C such that 

I f i r o ~ ( t )  - ~r~(s)l  < GIt - sl 1/2 

for any s, t E R.  
(4) The set K := {e;~(Noo + s); s E [0, 1], A > 0} is relatively compact in O. 

Remark 1: In Theorem 2, we prove that C in (3) of Lemma 1 can be taken 

a s l .  
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Proof: (1) Clear from the definitions of No~ and/~o~. 

(2) The  graph of N ~  restr icted to the interval [a, b] is the image of the graph of 

No~ by the affine t ransformat ion sending the point  (0, 0) to (a, N ~ ( a ) ) ,  (0, 1) to 

(a, Woo(b)), (1, 0) to (b, N ~ ( a ) ) ,  and (1, 1) to (b, N ~ ( b ) ) .  Moreover, we already 

remarked tha t  N ~ ( b )  - N ~ ( a )  = ~(b - a) 1/2. Our conclusion follows from these 

properties.  

(3) Assume without  loss of generality tha t  0 < s < t _< 1 and t - s < 1/2, since 

otherwise, either the required inequality holds with C -- 2 or it follows from our 

case by the symmet ry  or with s V 0 for s and t A 1 for t. Take the max imum n 

such tha t  there exist either 2 neighboring synchronized intervals [a, b] and [b, c] 

of level n with Is, t] C [a, c]. Then  we have t - s > (1/9)((b - a) A (c - b)), since 

otherwise, we can take a larger n than  this. It  follows tha t  

INoo(t) - l ~ ( s ) l  = IN~( t )  - N ~ ( s ) l  

<_ INo~(b) - No~(a)l + INoo(c) - N ~ ( b ) t  

= Ib - @ / 2  + Ic - bl ~12 

= 3((b - a) A ( c -  b)) 1/2 

< 9It - s]U 2, 

where we used the fact tha t  either c - b = 4(b - a) or c - b = (1/4)(b - a) holds, 

since [a, b] and [c, d] are neighboring synchronized intervals of the same level (see 

(2) of Lemma  2). 

(4) By (3), any function f in K satisfies I f ( t )  - / ( s ) l  <_ C l t  - sL 1/2 for any 

s, t c t t  together  with f (0 )  = 0. This implies tha t  K is relatively compact  in O. 
| 

THEOREM 1: The N-process introduced above is well defined and has the same 

distribution as the cocycle F for a = 1/2 in Example  8 in [1]. 

Proof: In Example  6 of [1], the weighted subst i tut ion (~o, 71) on {0, 1} was defined 

a s  

Then  we defined ft := fl(~o, 7/), the set of colored tilings associated to (9~, ~/) which 

is strictly ergodic with respect to the addit ion ( i t -act ion) .  Let  # be the unique 

invariant measure on f~ with respect to the addition, which is also invariant under 
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the multiplication (R+-action). Finally, we defined the 1/2-homogeneons cocycle 

F on ft in Example 8 of [1]. Then 

(3) F(w,t) F(w,c) (_1)~( d c)l/2N ~ (  

for any w E gt and t E [c, d] if there exists a tile S of w with color a such that  

S = (a, b] x [c, d) for some a, b. For w E ~t, let F(~0) denote the function R ~ R 

such that F(w)(t) = F(w, t). Then, F(w) E O. Let #F be the distribution of the 

random variable F(w) with values in O defined on the probability space (~, #). 

We want to prove that the process (Nt; t E It)  is well defined and has the 

distribution #F- For this purpose, we prove that the distribution of the random 

variable X L  :---- e 'k( l~c~ + s)  converges in the weak sense to ~F as L --+ c~, where 

(s, A) is a uniformly distributed random variable on [0, 1] x [0, L]. It is sufficient to 

prove that  for any sequence {L,;  n = 1, 2 , . . .}  with lirnn_+~ L ,  = co, there exists 

a subsequence {L',} of {Ln} with l i r n n ~  L', = co such that the distribution of 

X L. converges to #F weakly as n tends to infinity. 

Take any sequence {Ln; n = 1, 2 , . . .}  with l i m n ~  L ,  = c~. There exists a 

subsequence {L'n} of {L,}  with linvn-+~ L' n = co such that the distribution of 

XL, ~ converges weakly to, say, P', as n tends to infinity by (4) of Lemma 1. We 

want to prove that P '  = #F. 

Since ~ is strictly ergodic with respect to the addition ([1]) and the transforma- 

tion F: ~t ~ O is continuous satisfying F(w + t) = F(w) + t (Vw E ~t, Vt E R), 

F(gt) is strictly ergodic with respect to the addition. Hence it is sufficient to 

prove that 

(i) P '  is invariant under the addition, and 

(ii) P'(F(Ft)) = 1. 
Let L be any bounded continuous funtional on O. Take any t E R and ~/E R+.  

Then we have 
r 

L' n 1+re - ~ 

= ]" L(w)dP'(w), 

which proves (i). 

Since F ( ~ )  is compact ([1]), to prove (ii) it is sufficient to prove thatP'( f ( f t )M) 
= 1 for any M > 0, where F(ft)M is the set of f E O such that  there exists w E f~ 

satisfying that the restrictions of f and F(w) to [ - M ,  M] coincide. 
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Let [aL, bL] be the minimal synchronized interval of XL, if it exists, containing 

[ -M,  M] and let CL = 0 or 1 corresponding to whether [aL, bL] is increasing or 

decreasing. Such an interval [aL, bL] exists if and only if 

(4) [ -M,  M] C [-se a, (1 - s)eX], 

since [-se x, (1 - s)e ~] is the unique synchronized interval of X of level 0. In 

this case, take w E f~ such that  there exists a tile S of w with color CL and 

S = (a,b] x [aL,bL) for some a,b. Then by Lemma 1 and (3), we have 

F(w, t) - F(w, aL) = XL(t) -- XL(aL) 

for any t E [ - M , M ]  C [aL,bL]. Since F(w,O) = XL(O) = O, we have g(w, aL) = 
XL(aL) by putting t = 0 in the above equality. Hence, we have F(w, t) = XL(t) 
for any t • [ -M,  M]. Thus, 

(5) • F( )M 

if (4) holds. 

Let us estimate the probability that (4) holds. 

P r ( [ -M,  M] C [-se  A, (1 - s)eX]) = Pr((s A (1 - s))e ~ >_ M)  

= ~ l(s^O-8))e~ >MdsdA 

> -  (1 - 2Me-X)dA 
- L  

2M 
(6) >_1- -~--, 

which tends to 1 as L tends to infinity. 

Since F(f~)M is a closed set we have, by (5) and (6), 

P'(F(a)M))  > ,~-~lim Pr(XL,~, • F(a)M) = 1, 

which proves (ii). | 

COROLLARY 1: The following statements hold. 
(1) Oo = F(Ft), where Oo is the topological support of the measure P. 
(2) For any 0 E Oo and a, b E R with a < b, there exist s E [0, 1] and A E [0, oo) 

such that the restriction of  0 to the interval [a, b] coincides with the restriction 

of  eX(1Voo + s) to [a, b]. Moreover, in this case, [a, b] C [-se x, (1 - s)e x] holds. 
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COROLLARY 2 ([1]): The space 0o  is compact and invariant under the addi- 

tion and multiplication. The  addition on (9o is strictly ergodic with the unique 

invariant probabili ty Borel measure P.  Moreover, P is invariant under the mul- 

tiplication. The  entropy of  the addition is O. The stochastic process (Nt; t C R) 

is self-similar with order 1/2 and has stationary, strictly ergodic and noncorre- 

lated increments with 0 entropy. Moreover, E[Nt] = 0 and V[Nt] -~ Cit[ for any 

t E R ,  where C > 0 is a constant. Furthermore, the process (Nt; t c R) is t ime 

reversible. 

Remark 2: We do not know the exact value of C in Corollary 2. A numerical 

computat ion tells us tha t  C -- 0.1243.. . .  

3. Synchronization 

LEMMA 2: (1) For any synchronized intervals I and J,  either I C J, I D J or 

I i N j i  = ~ holds, where I ~ and j i  are the sets of  interior points of  I and J ,  

respectively. 

(2) For any neighboring synchronized intervals [a, b] and [b, c], either ( c - b ) / ( b -  

a) -- (1/4)(4/9) i for some integer i, or (c - b)/(b - a) = 4(4/9) i for some integer 

i, where i is the level of[b, c] relative to [a, b]. Moreover, one of  them is increasing 

and the other decreasing. 

Proof: (1) Clear from our construction of the function Noo. 
(2) Let [u, v] be the minimal synchronized interval containing [a, b] U [b, e] and 

let [u, u'], [u ~, v'], Iv', v] be the synchronized intervals of the next level, where 

u' =- (5u + 4v)/9, v' = (4u + 5v)/9. Then, there are 2 cases: 

CASE 1: [a,b] C [u,u'] and [b,c] C [u',v~]. 

In this case, we have b - a = (4 /9)h(4 /9) (v  -- u) and c - b = (4 /9)k (1 /9) (v  - u), 

so tha t  (c - b)/(b - a) = (1/4)(4/9) i with i := k - h, which is the level of [b, c] 

relative to [a, b]. 

CASE 2: [a, b] C [u', v'] and [b, c] C [v', v]. 

In this case, we have b - a = (4 /9)h(1 /9) (v  -- u) and c - b = (4 /9)k(4 /9) (v  -- u), 

so tha t  ( c -  b)/(b - a) = 4(4/9) i with i := k - h, which is the level of [b, c] relative 

to [a, hi. m 

LEMMA 3: For any increasing (decreasing) synchronized interval [a, b], we have 

N ~ ( a )  < Noo(t) < Noo(b) (Noo(a) > Noo(t) > Noo(b), respectively) for any 

t E (a, b). In particular, 0 <_ fiI~ (t) <_ 1 for any t E R .  
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Proof." Let [a, b] be an increasing synchronized interval of level n. Then, we 

remarked in Section 2 that N~(a) < Nm(t)  < N~(b) or Nn(a) > Nm(t) > N,~(b) 

for any t e (a,b) and m _> n. Since N,~(a) = N ~ ( a )  < Noo(b) = N~(b), 

we have Woo(a) < Nm(t)  < Nee(b) for any t • (a,b) and m > n. Take any 
t c (a, b). There exists m > n and a synchronized interval [c, d] of level m such 

t h a t a < c < t < d < b .  Then, 

N ~ ( a )  < Noo(c) = Nm(c) <_ NM(t)  <_ Nm(d) = N ~ ( d )  < Noo(a) 

for any M > m. Letting M -+ oo, we have 

N ~ ( a )  < Noo(t) < N~(a ) .  | 

LEMMA 4: (1) For any 0 < t < 1, we have Noo(t) <_ t 1/2. The equality holds if 

and only i f  [0, t] is a synchronized interval. 

(2) For any 0 <_ t < 1, 1 - Noo(t) <_ (1 - t) 1/2. The equality holds if  and only 

if [t, 1] is a synchronized interval. 

Proof'. (1) If t E (4/9, 5/9], then by Lemma 3, 

N ~ ( t ) / t  1/2 < N ~ ( 4 / 9 ) / ( 4 / 9 )  1/2 = 1. 

Let 

Then we have 

5 ( ~ )  3 469 b = 5  ( 4 ) 2 5  485 
a =  ~ +  - 729' 9 + 9 -  729' 

5 ( ; )  2 61 ( 4 )  2 65 
c = ~ +  81' d = l  81 

1 ( ~ )  3 17 
- -  - max N~( t ) ,  

N ~ ( a )  = ~  + 27 5/9<t<b 

1 ( ~ )  2 7 
= - = max Noo(t). N~(c )  =-~ + 9 b<_t<_d 

Hence, 

N ~ ( t ) / t  1/2 < N ~ ( a ) / ( 5 / 9 ) l / 2 =  - -  

for any t E (5/9, b], and 

17/27 
(5/9)1/2 

7/9 
N ~ ( t ) / t  W2 < Noo(c)/b 1/2 - (485/729)1/2 

< 1  

< 1  



328 T. KAMAE Isr. J. Math. 

for any t E (b, d]. If t E (d, 1), then there exists k = 2, 3 , . . .  such tha t  1 - (4/9) k 

< t _< 1 - (4/9) k+l, and 

N ~ ( t ) / t  1/2 < N ~ ( 1  - (5/9)(4/9)k) / (1 -- (4/9)k) 1/2 = 
l(2~k 

1 - ~ 5 /  

( 1 - (4 /9 )k )1 /2  
< 1 .  

Therefore, N ~ ( t ) / t  1/2 >_ I holds only if t = 1 or t C (0,4/9]. For t E (0,4/9], 

let k = 1, 2 , . . .  be such tha t  (4/9) k+l < t < (4/9) k. Then, since [0, (4/9) k] is a 

synchronized interval, we have by Lemma 1 tha t  

N o o ( t ) / t l / 2 = N ~ ( ( 9 / 4 ) k t ) / ( ( 9 / 4 ) k t )  1/2. 

Since (9/4)kt E (4/9, 1], Noo(t) / t  1/2 >_ 1 if and only if (9/4)kt = 1. Tha t  is, 

t = (4/9) k. This is equivalent to saying tha t  [0, t] is a synchronized interval. 

Moreover, since the value of N ~ ( t ) / t  U2 at such t is 1, we complete the proof of 

(1). 

(2) follows from (1) by (1) of Lemma 1. | 

LEMMA 5: For any a, b E R with a < b, I]Voo(b) - ]Voo(a)l < ( b - a )  1/2. The  

equality holds i f  and only i f  [a, b] is a synchronized interval. 

Proo~ If a < b < 0 or 1 < a < b, then l o (b) - = 0 < (b - a)l/2. If 
a <: 0 < 1 < b, then ]~Ioo(b) - ~Ioo(a)I = 1 < ( b -  a) 1/2. If  a <: 0 < b < 1, then 
I/~r~(b) -/~roc(a)[ ---/~roo(b) ~ b 1/2 < (b - a) 1/2 by Lemma 4. If 0 < a < 1 <: b, 

then I/~roc(b) -/~/-oo(a)l --- 1 - 2Voo(a) _< (1 - a) 1/2 < (b - a) 1/2 by Lemma 4. 

Finally, assume tha t  0 _< a < b _< 1 and Noo(a) = Noo (a), -floo(b) = Noo(b). 
Let [c, d] be the minimal synchronized interval containing [a, hi. We assume 

without  loss of generality tha t  the interval [c, d] is increasing. Let c' = (5c+ 4d)/9 

and d' = (4c + 5d)/9. Then, the intervals [c, c'], [c', d'], [d', d] are synchronized. 

By the assumption, [a, b] is not contained in any of these intervals. Hence, there 

are 3 cases: 

CASE 1: a < c' < b < d', 

CASE 2: c' < a < d' < b, and 

CASE 3: a < c' < d' < b. 
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In  Case 1, by L e m m a s  1, 3 and 4, we have 

I N o o ( b )  - 1%o(a)] < (Noo(C')  - N o o ( a ) )  V (Noo(C')  - Noo (b ) )  

= v (a'- 
~ e  - e /  \ d ' -  e ' ]  

1/2 C t  - -  a V ( d ' - c ) '  ,/2 ( ' ~ b  - c t ,/2 
(Ct (Ct C) '/2 

= ( c ' - a )  1 / 2 v  ( b - c ' )  ' /2  

< (b - a)  ' / 2 .  

In  Case 2, by L e m m a s  1, 3 and 4, we have 

INoo(b) - Noo(a)l < 

_< 

< 

( N o o ( a )  - N o o ( d ' ) )  V (Noo(b)  - N o o ( d ' ) )  

(d'  - c ' )1 /2Noo  \ d '  - c ' ]  V (d - d ' ) t / 2 N o o  \ d  - d ' ]  

_ ( a' - o ( b - d' " 
\d'-¢'] v (d- \~-d'] 

(d' - a) ' /2 V (b - d ')  1/2 

(b - a) 1/2. 

Let us consider Case 3. Let  A := Noo(C')  - N o o ( a )  and B := Noo(b)  - N o o ( d ' ) .  

Then  we h a v e A  > 0 and B > 0 b y L e m m a 3 .  B y L e m m a s  1 and 4, we have 

A 2 < c ' - a  and B 2 < b -  d'. Moreover,  N o o ( d ' ) -  Noo(C')  = - ( d ' - c ' )  1/2. Hence, 

(7) 

(Noo(b)  - Noo(a)) 2 = (A + B - (d' - e ' ) l /2)  2 

= A 2 + B 2 + (d'  - c ' )  + 2 A B  - 2(A + B ) ( d '  - c') 1/2 

< b - a + 2 A B  - 2(A + B ) ( d '  - c') 1/2. 

Since A < (c '  - c) 1/2 = 2(d'  - c~) 1/2 and B < (d  - d~) 1/2 = 2 ( £  - c ')  1/2, we have 

2 A B  - 2(A + B ) ( d '  - c') t/2 

< 2 ( d '  - c')  1/2. B + A -  2(d' - c~) 1/2 - 2 ( A  + B ) ( d '  - c ' )  1/2 = 0 

with equali ty only if A = (c' - c) 1/2 and B = (d - £ ) 1 / 2 .  Therefore  by (7), we 

have Igoo(b )  - g o o ( a ) l  < (b - a) 1/2 with equali ty only if a = c and b = d and the 

interval [a, b] is synchronized. | 

LEMMA 6: L e t  s • [0, 1] a n d  A • [0, oo) be  a r b i t r a r y  a n d  l e t  X := eX(f¢oo + s ) .  

(1) For  any  interval  [a,b] (a < b), w e  have I X ( b )  - X ( a ) l  < (b - a)  1/2. 
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(2) The following statements for an interval [a, b] (a < b) are equivalent to each 

other. 

(i) [a, b] is a synchronized interval of X .  

(ii) X(a)  # X(b) and 

x ( t )  - X ( a )  = - 

for a n y  t e [a, bl, where we set  :=  s g n ( X ( b )  - X ( a ) ) .  

(iii) IX(b) - X (a)l = (b - a) 1/2. 

Proo~ (1) follows from L e m m a  5. 

(2) I t  is clear t ha t  (ii) implies (iii). T h a t  (i) implies (ii) follows from L e m m a  

1. T h a t  (iii) implies (i) follows from L e m m a  5. | 

Let  w = (Nt  (w); t E R)  be an a rb i t ra ry  sample  pa th  of the N-process belonging 

to 00.  Then  by Corol lary 1 its restr ict ion to any bounded  set is a restr ict ion 

to the same set of some of X in L e m m a  6. An interval [a, b] (a < b) is called 

a s y n c h r o n i z e d  i n t e r v a l  o f  w if it is a synchronized interval of a function X 

as in L e m m a  6 which coincides wi th  w on [a - 4(b - a), b + 4(b - a)]. This  is 

well defined since it is independent  of  the choice of X by L e m m a  6. I t  is called 

i n c r e a s i n g ,  d e c r e a s i n g ,  lef t ,  m i d d l e  or r i g h t  if it is so in X as above. We 

cannot  count the level of a synchronized interval of w, but  we can compare  the 

levels between synchronized intervals. For two synchronized intervals I and J of 

w, J is said to have l eve l  n (n C Z) r e l a t i v e  to I if there exists X as in L e m m a  

6 which coincides with w on an interval containing I U J and m > 0 such tha t  

I and J are synchronized intervals of X with levels m and m + n, respectively. 

In part icular ,  they are said to have the s a m e  leve l  if n -- 0 in the above. I f  two 

synchronized intervals I and J of  w satisfy I C J and I has level n relative to J ,  

we say tha t  J is the n - th  a n c e s t e r  of I .  

T H E O R E M  2: For any w COo and an interval [a,b] (a < b), Iw(b) - w(a)l < 

(b - a) 1/2 with equality if  and only if  [a, b] is a synchronized interval of w. If  [a, b] 

is a synchronized interval of w, then 

w(t) - w(a) = ~ ( b -  a)U2N~(tb~aa) 

for any t • [a, b], where we set ~ :=  sgn(~(b) - ~ (a ) ) .  

Proof: Clear from L e m m a  6. | 
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LEMMA 7: For any t with 0 < t <_ 1, Noo(t) >_ (1/3)t 1/2. 

Proof." Take k = 0, 1 , 2 , . . .  such tha t  (4/9) k+~ < t < (4/9) k. The  m i n i m u m  

value of N ~ ( s )  for (4/9) k+l < s _< (4/9) k is (1/3)(2/3) k, at ta ined  when s = 

(5 /9) (4 /9)  k. Therefore,  we have 

= ( 4 )  k/2 
N ~ ( t )  >_ ( 1 / 3 ) ( ~ )  k ( 1 / 3 ) \ ~ /  > (1/3)t 1/2. 

For any co C O0 and e > 0, a closed interval I is called a (1 - e ) - s y n c h r o n i z e d  

i n t e r v a l  of co if there exists a synchronized interval J of co with ]I N JI / l I  U JI >- 

1 - ~ .  

THEOREM 3: Let co E 0o. Then the following statements hold. 

(1) For any e > 0, there exists 5 > 0 such that for any interval [a, b] (a < b), if  

[co(b) - co(a)[ > (1 - 5)(b - a) 1/2, then [a, b] is an (1 - e)-synchronized interval of 

co. In fact, for e < 1/10, we can take 5 = e/18.  

(2) For any 5 > 0, there exists e > 0 such that for any interval [a, b] (a < b), i f  

[a, b] is an (1-¢)-synchronized interval of co, then [co(b)-co(a)l > ( 1 - ~ ) ( b - a )  1/2. 

111 fact, for 5 < 1, we can take e = (5/4) 2. 

(3) I f I  = [u,v] is a (1 - e)-synchronized interval of co with 0 < e < 1/10, then 

there exists a unique solution in u' and v' of the equation: 

( s )  u', v' C [ u -  ( 1 / 7 ) ( v -  u), v + ( 1 / 7 ) ( v -  u)], 

ce(u ' )  = min{co ( t ) ;  t E [u - ( 1 / 7 ) ( v  - u ) ,  v + ( 1 / 7 ) ( v  - u ) ]} ,  

co(v ' )  = m a x { c o ( t ) ;  t e [u - ( 1 / 7 ) ( v  - u ) ,  v + ( 1 / 7 ) ( v  - u)]} .  

Let this solution be u', v'. Then the interval J defined as J = [u', v'] i f  u' < v' and 

J = [v', u'] i f v ' <  u ' is  a synchronized interval ofw such that [ InJ l / l lUJI  >_ 1-e .  

Proof: (1) Take any e with 0 < e < 1/20. Assume tha t  [a, b] is not a (1 - 2e)- 

synchronized interval of w. Let  [c, d] be a min imal  synchronized interval of w 

containing [a + e(b - a), b - e(b - a)]. We assume wi thout  loss of general i ty tha t  

[c, d] is increasing. Let c' = (5c + 4d) /9  and d' = (4c + 5d)/9.  Then,  by the 

min imal i ty  of [c, d] and the assumpt ion  tha t  [a, b] is not (1 - 2e)-synehronized, 

we have 6 cases. 

CASE 1: c - e ( b - a ) < a < c + e ( b - a ) a n d c ' + e ( b - a ) < b < _ d ' .  

CASE 2: c - e ( b - a ) < a < c + e ( b - a ) a n d d ' < b < d - e ( b - a ) .  
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CASE3: c + e ( b - a ) < a < c ' - e ( b - a ) a n d c ' + e ( b - a ) < b < d ' .  

CASE4: c + e ( b - a ) < a < c ' - e ( b - a )  a n d d ' < b < d + c ( b - a ) .  

CASE5: c ' - ¢ ( b - a ) < a < c ' + e ( b - a ) a n d d ' + ¢ ( b - a ) < b < d + e ( b - a ) .  

CASE6: c ' + e ( b - a ) < a < d ' - c ( b - a ) a n d d ' + ¢ ( b - a ) < b < d + ¢ ( b - a ) .  

In Case 1, by Theorem 2 and Lemma 7, we have 

I ~ ( b )  - ~ ( a ) l  = ( ~ ( c ' )  - ~ ( a ) )  - ( ~ ( c ' )  - ~ ( b ) )  

<_(c' - a)  1/2 - (d' - c ')1/2Noo \ d' - c' ] 

<_(c' - a) i n  - ( d ' -  c ' )~ i~(u3 ) ( b - c' ~ ~i~ 
\ d' - c' ) 

=(c' - a)  ~i2 - (1/3)(b - c ' )  1 / 2  

< ( b -  a)  ~i~ - (1 /3 ) (~ (b -  a)) 1/2 

< ( b  - a )1 /2 (1  - ( E / 9 ) I P ) .  

Hence, taking 6 := (e/9) 1/2 > e/9 for 2c, we have (1). 

In Case 2, by Theorem 2 and Lemma 7, we have 

( ~ ( b )  - ~ ( a ) )  ~ 

= ( A + B  

< (c' - a) 

= - b - a +  

< b - a +  

< b - a -  

= b - a -  

< b - a -  

< b - a -  

_ C )  2 

+ (b - d') A- (d' - c') -4- 2 A B  - 2 A C  - 2 B C  

2 A B  - ( A  H- B ) ( 2 / 3 ) ( d  - c) 1/2 

(2/3)(d - c )1 /2B  + A B  - ( A  + B)(2/3)(d - c) 1/2 

A ( w ( d )  - w(d ' )  - B )  

( (w(c ' )  - w(c)  ) - (w(a)  - w(c)  ) ) (w(d)  - w(b)  ) 

((2/3)(d - c) 112 - la - c1112)(I/3)(d- b) ~12 

((2/3)((1 - 2c)(b - a)) 1/2 - (~(b - a)) W2) (1/3)(~(b - a)) T/2 

b - a - ( 1 / 1 2 ) ~ l / 2 ( b - a )  

(1 - e l / 2 / 1 2 ) ( b - a ) ,  

where we put A := w ( c ' ) -  w(a), B := w ( b ) -  w(d ' )  and C :-- w(c ' )  - w ( d ' ) .  

Hence, taking (f := ~1/2/12 > e/9 for 2~, we have (1). 
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For Case 3, by Theorem 2 and Lemma 7, we have 

(w(b)  - w ( a ) )  2 = ( A  - B )  2 

<_(c' - a) + (b - c') - 2 A B  

_ b  - a - 2 ( 1 / 3 ) ( c '  - a ) 1 / 2 ( 1 / 3 ) ( b  - c') 1/2 

<_b - a - 2 ( ( 1 / 3 ) d / ~ ( b  - a ) i / ~ )  ~ 

<_(1 - ( 2 e / 9 ) ) ( b  - a) ,  

where we put  A := w(c ' )  - w(a)  and B := w ( d )  - w(b).  Hence, taking 5 := 2e /9  

for 2e, we have (1). 

In Case 4, i fd '  < b <_ d' + e ( b - a ) ,  then there exists b' with c' + e ( b - a )  < b' < d' 

and w(b')  = w(b).  Hence (1) follows from Case 3 since 

I ~ ( b ) - ~ ( a ) l  = l ~ ( b ' )  - ~ ( a ) l  

< ( 1 -  ( 2 ~ / 9 ) ) ( b ' - a )  

< ( 1 -  ( 2 e / 9 ) ) ( b - a ) .  

Now assume tha t  d' + c(b - a) < b < d + e(b - a).  By Theorem 2 and Lemma 7, 

we have 

(~ (b)  - ~ ( ~ ) ) ~  : ( A  + B - C) 2 

<_(c' - a) + (b - d') + (d' - c') + 2 A B  - 2 A C  - 2 B C  

=b - a + 2 A B  - ( A  + B ) ( 2 / 3 ) ( d  - c) 1/~ 

<_b - a + A ( 2 / 3 ) ( d  - c) 1/2 + A B  - ( A  + B ) ( 2 / 3 ) ( d  - c) 1/2 

< _ b  - a - ( w ( c ' )  - w ( c )  - A ) B  

<_b - a - (1 /3)(a  - c ) 1 / 2 ( 1 / 3 ) ( b -  d') 1/2 

< _ b  - a - ( 1 / 9 ) e ( b  - a )  

= ( 1  - ( ~ / 9 ) ) ( b  - a) ,  

where we put  A :=- w(c ' )  - w(a) ,  B := w(b) - w(d ' ) ,  and C := w(c ' )  - w(d ' ) .  

Hence taking ~ := ~/9 for 2¢, we have (1). 

Case 5 and Case 6 follow from the previous cases by symmetry.  

(2) Let  0 < ~ < 1/10 and let [a, b] be a (1-e ) - synchronized  interval. Then  there 

exists a synchronized interval [c, d] with la - e I < 2 e ( b -  a) and Ib -  d I < 2e(b - a). 
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Then  by Theorem 2, we have 

Iw(b) - w(a)t >_lw(d) - w(c)l - Iw(a) - w(c)l - Iw(b) - w(d)l 

>_(d - e )  1 /2  - la - cl  1 / 2  - [b - dl 1/2 

>_(b - a - e(b - a)) 1/2 - 2(2e(b - a)) 1/2 

_>(1 - 4 1/2)(b - a )  

Thus, for any 6 with 0 < 6 < 1, we have (2) by taking e = (6/4) 2. 

(3) Assume without  loss of generality tha t  w(a) < w(b). Then  there exists a 

synchronized interval J = [u', v'] such tha t  II N JI/[I  U JI -> 1 - ~. Moreover, 

u ' ,  v '  is the unique solution of equation (8). | 

4. S t o c h a s t i c  i n t e g r a l  

Let L = L(w) be a measurable function of w E Oo taking a value in positve 

integers. Let {~o < ~1 < . .-} be a finite or infinite sequence of measurable 

functions of w E O0 such tha t  [~i, ~i+1] is a synchronized interval of w C O0 

for any i = 0 , 1 , . . .  and (L is defined for any w E Oo. We call a sequence 

:=  {(o < ~1 < "'" < eL} a s y n c h r o n i z e d  ne t .  If, for an interval I ,  I C 

[~0, ~L] holds for any w e Oo, we say tha t  ~ c o v e r s  I .  We denote I] ~ [[:=11 

max0 <i< L -  1 (~i+ 1 -- ~i) II ~" Let C be a sub-a-field of the probabil i ty space ( Oo, P) .  

I f  the above L and ~iAL (i ---- 0, 1 , . . . )  are measurable with respect to C, then we 

say tha t  ~ is m e a s u r a b l e  with respect to C or ~ is C - m e a s u r a b l e .  If  {Y} is a 

set of measurable functions on the probabili ty space (O0, P) ,  then we say that  

is {Y}-measurable if it is measurable with respect to the a-field generated by the 

functions in {Y}. Let ¢ = {(o < ~1 < "'" < ~L} and q = {7/0 < 7/1 < . . .  < /]g} 
be synchronized nets. If  for any w C Oo, ( C q holds between the sets of values 

of functions in ( and q, and if ~/is measurable with respect to ~, we say tha t  ~/is 

a r e f i n e m e n t  of ~. 

LEMMA 8: Let J be a bounded dosed interval with J = [a, b] (a < b). Then, for 

any bounded closed interval I with I C j i  and e > O, there exists a synchronized 

net ~ covering I with II ~ tl < e which is measurable with respect to dNIj ,  where 

aN] j  := {Nt - Ns;  s, t C J} .  

Proof." We may  assume tha t  e > 0 is small enough so tha t  I C [a + 2e, b - 2@ 

lST STEP: Let { (u , ,  v,~); n = 1 ,2 , . . . }  be a countable dense subset of 

{ ( x , y ) ; - c / 2  < x < 0 < y < c /2 ,  c / 1 8  < y - x < e /2} .  
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Since there  exists an synchronized interval [c, d] of w containing a + E  with  ~/18 _< 

d - c < ~/2, for 6 wi th  0 < 6 < 1/200, there exists n = 1, 2 , . . .  such t ha t  

I~(a  + + - w(a + c + Un)[ > (1 - 6)(vn - un) 1/2. 

Take the m i n i m u m  n as this and define d N I j - m e a s u r a b l e  functions u := a + ¢ + u ,  

and v := a + ¢ + v,,. Then  by Theorem 3, [u, v] is (1 - 6 ' )-synchronized interval 

of w for some 6' < 1/10. Let  u '  and v '  be  the unique solution of equat ion (8) 

in Theo rem 3 for this (1 - 6 ' )-synchronized interval [u, v]. Then  the functions u '  

and v '  o f w  E (~ are measurable  wi th  respect  to d N I j .  We define ~0 = u ' ,  C1 = v '  

i f u ' < v ' a n d ~ 0 = v ' ,  Cl = u' if v' < uq 

2ND STEP: Assume tha t  a sequence of d N I j - m e a s u r a b l e  functions ~0 < C1 < 

• "" < Ck is defined so tha t  C0 < a + 2~ and [C~-1, Ci] is a synchronized interval 

with Ci - Ci-I  < ~ for any i = 1, 2 , . . . ,  k. This  is done for k = 1 in the 1st step. 

We add Ck÷l to get a longer sequence with  this propert ies .  Take the m i n i m u m  

nonnegat ive  integer i such tha t  4 (4 /9 )~ (Ck-  Ck-1) < ~- Since [Ck-l,Ck] is a 

synchronized interval,  for exact ly  one of ~ in { 1/4, 4}, [Ck, Ck + ~ (4/9) ~ (Ck - Ck - 1)] 

is a synchronized interval. Define Ck+l = Ck+~(4/9)i(Ck--Ck-1) wi th  this ~. Since 

can be chosen in a d N I j - m e a s u r a b l e  way by Theorem 2, Ck+l is measurable  

with respect  to d N I j  such tha t  {k+l - (k < e- 

FINAL STEP: We prove tha t  we can continue this process until  we get CL+I > 

b - 2~. Then,  C :-- {C0 < C1 < " '"  < CL} satisfies the required propert ies.  

The  only possible obst ruct ion against  this is tha t  Ck converges to some point ,  

say ~ < b -  c as k --+ oc. We prove t ha t  this is impossible.  To the contrary,  

suppose tha t  this is the case. Then,  there exists K such tha t  for any k > K ,  the 

i in the descript ion of the 2nd step is chosen as i = 0, so t ha t  all synchronized 

intervals [Ck, Ck+l] for k = K,  K +  1 , . . .  have the same level. All consecutive 2 .3  ~ 

synchronized intervals of the same level contain a synchronized interval of level - n  

relative to t hem for any n = 1, 2 , . . . .  A synchronized interval of level - n  relative 

to the synchronized interval [CK, CK+I] has length at  least (9/4)'*(CK+1 - Cg)- 

Therefore,  CK+2.3- - CK _> (9 /4)n(Cg+l  - CK), which is a contradict ion since, 

let t ing n ~ oc, we have ~ / -  Ck in the  lef t-hand side and oc in the r ight-hand side. 
| 

Let  A(w,  s) be a function on Oo x R which is measurab le  in w and continuous 

in s for any fixed w. Then  for any a, b E R with  a < b, we define a s t o c h a s t i c  
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integral f: AdNt as follows: 

b L - 1  

(9) ~a AdNt := ,~,-~olim E A(w'~i)(N¢~+ 1 - N¢,) 
~o--*a i = 0  
~L--+b 

if the limit in the right-hand side exists, where ( = {@ < (i < "'" < (L} is a 
synchronized net. 

THEOREM 4: Let H(x, s) be a real valued function of x, s E R which is twice 
continuously differentiable in x and once continuously differentiable in s. Then for 
any a < b, the stochastic integral f :  Hx(Nt,t)dNt exists and is (Hx)j V dNlj- 
measurable with J = [a, b], where (Hx)j := {H(Nt, t);t E J}. Moreover, the 
following formuh holds: 

f b fab(~Hx~(Nt, t)+Hs(Nt, (10) H(Nb, b)-H(Na,  a) = Hx(Nt, t)dNt+ t))dt. 

Proof: The (Hx)j V dNIj-measurability of the stochastic integral follows from 
Lemma 8 if it exists, by taking the limit @ $ a and ~L J" b. Therefore, it suffices 
to prove the existence of the stochastic integral and formula (10). For a net ~ = 
{(0 < (i < " "  < (L}, denote 

L- -1  

B(¢) := E H~(N¢,, ~,)(N¢.+, - N¢,). 
i = 0  

Then, by the Taylor expansion of H and the continuity of H, Hz~ and Hs in 
(x, s) as well as the sample path Nt in t, as 1[ ( [1--+ 0, ~o --+ a and ~L "+ b we 
have 

H(Sb, b) - H(Na, a) 
L- -1  

= E (H(N¢,+,, ~i+1) - -  H(N¢,, ~i)) + o(1) 
i = 0  

L - 1  

= E (Hz(N¢" ¢i)(N¢,+ 1 - N¢,) + ~Hzz(N(,, ~i)(N(,+, - N¢,) 2 
i = 0  

+ Ht(N¢,, ¢i)(~i+i - ~) + o(~i+i - ~i)) + o(1) 
L - 1  

=B(~) + E (~Hxz(N¢.,~i) + Ht(N¢.,~,))(~,+i-¢i)+o(1) 
i = 0  

f[1 =B(()  + (~Hx~(Nt, t) + Ht(Nt, t))dt + o(1), 
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where we used the fact that  (N¢,+1 - Nff.)2 = ~i+1 - ~i- Hence, B(~) converges. 

Thus, the stochastic integral exists and we have (10). | 

5. P r e d i c t i o n  

Let H(x ,  s) be a real valued function of x, s E R such that 

(H1) H is twice continuously differentiable in x and once continuously 

differentiable in s, and 

(H2) H ,  (x, s) > 0 for any x, s e R. 

We consider the stochastic process Yt = H(Nt ,  t) (t e R).  Our problem is 

to predict Yt for t ~ J from the observation Yj := {Yt; t c J},  where J is a 

bounded closed interval with nonempty interior. The function H is considered to 

be unknown except for the property (H1) and (H2). All the measurable functions 

of the observation Yj  we construct in the following do not need any further 

knowledge on the unknown function H. 

THEOREM 5: For any w E Oo and t C R ,  

I Y v  - 
Hx(Nt ,  t) = lim sup 

. . . .  , ( v -  u)l/2 
u , (  v 

Let t l ,  t2 with t 1 < t 2 tend to t, attaining the l imsup in the right-hand side of 

the above equality. Let  tl  I = (5tt + 4t2)/9 and t2 r = (4tl + 5t2)/9. Then, 

= 9  lim -Ytl  + Ytl' + Yt2' - Yt2 Hx~(Nt, t) 
(t2 - t l )  1/2 

3 1" Yt, - 9Yt~, + 3Yt2, + 5Yt2 
H~ ( N t , t ) = ~ lm -(~2 - -- ~ - - ~  

Therefore, i f t  E J,  then those quantities Hx (N t ,  t), Hz~:(Nt, t) and Hs (N t ,  t) are 

measurable functions of the observation Y j .  

Proo~ Since, by the Taylor expansion of H,  we have 

Yv - Y~ =H(N ~ ,  v) - H(N~,  u) 

1 
=Hx(Nt ,  t)(Nv - Nu) + ~Hxx (N t ,  t)(N~ - Nu) 2 

+ Us(Nt ,  t)(v - u) + o(v - u) 

as u, v --+ t, by Theorem 2 and (H2), we have 

IY. - Y~I INv - N~.I 
limsup ~ : ~ ) - - i ~  = n . ( N t , t ) l i m s u p  ~L_ u - - ~  

u ~ v  u<~v 

=H~(Nt ,  t). 
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By Theorem 3, the lim sup is attained if and only if u, v -+ t, so that [u, v] is an 

(1 -¢)-synchronized interval of w with ¢ -+ 0. Therefore, the interval It1, t2] as in 

the statement of our theorem satisfies this condition. Furthermore, since we can 

approximate the ( 1 -  ¢)-synchronized interval [tl, t2] by a synchronized interval 

close to it and approximate the following quantities for the former by those for 

the latter with small errors, we may assume that [tl, t2] itself is synchronized. 

Consider the Taylor expansions for 

H (Nt2, , t 2 ' ) - H  (Nt l  , , tit), 
H (Ntz , t 2 ) - H  (Nt ,  , , t l ' ) ,  

H(Nt2 ,  t 2 ) - H ( N t , ,  tl), 

and using the relations 

t2' - t l '  =(1/9)(t2 - Q), 

- - t l ) ,  

Nt2, - N t l ,  = - -  (1/3)((t2 - t l)  1/2, 

N,~ -- Ntl, =(1/3)~(t2 - t l)  1/2, 

Nt~ - N t l  =~(t2 - tl) 1/2, 

where ~ = sgn(Nt2 - N t l ) ,  we have 

Yt2' - Yt, '  = - (1 /3 )~Hx(Nt ,  t)(t2 - t l)  1/2 + ( 1 / 1 8 ) H ~ ( N t ,  t)(t2 - t l)  

+ (1 /9 )H~(Nt , t ) ( t2  - t l)  + o(t2 - tl), 

Y*2 - YtV =(1 /3 )~H~(Nt , t ) ( t 2  - t l)  1/2 + ( 1 / 1 8 ) H x , ( N t , t ) ( t 2  - t l)  

+ (5 /9 )Hs(Nt ,  t)(t2 - t l )  + o(t2 - t l ) ,  

and 

Yt~ - Yt, =~Hz(Nt,  t)(t2 - t l )  1/2 + 2 H x z ( N t ,  t)(t2 - t l)  

+ Hs (N t ,  t)(t2 - tl) + o(t2 - t l ) .  

By solving the above linear equation on H x ( N t , t ) , H z z ( N t ,  t ) , H s ( N t , t )  and 

letting t2 - tl  ~ 0, we get the required formulas for Hxx(Nt ,  t) and H t ( N t ,  t). 

It is clear from the above formulas that if t belongs to the interior of J,  

then the quantities Hxx(N t ,  t) and H t ( N t ,  t) are measurable with respect to the 

observation Yj .  It follows from the continuity that the same result holds for any 

t c J .  | 
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THEOREM 6: 

I C (a, b). 
(1) For ally 5 > 

( t - s , t + e ) ,  

with 
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Let I,  J be closed intervals with J = [a, b] (a < b) and 0 ¢ I i C 

O, there exists ~ > 0 such that for any t • Y and u ,v  • 

Yv - ru = Hz(Nt ,  t)(Nv - Nu) + ~. 

Izl  _< 5 ( t N .  - + Iv - ull/ ). 

(2) For any e > 0, there exists a Yj-measurable synchronized net covering I 

with II¢ II< c. 
(3) d NI j  is measurable with respect to the observation Yj .  Hence, both terms 

in the right-hand side of (10) are Yj-measurable. 

Proof'. (1) For any given 5 > 0, take ~ with 0 < e < 1 satisfying 

(i) [Hx(x', s') - Hx(x,  s)l < 5 for any (x, s) and (x', s') with 

s,s '  • f ,  I s -  JI < ~, [xl,]x'] <_ ([a']V[b']) x/2 and ] x -  x'[ < c 1/2, 

(ii) sup~ej, ' i4_<(la, lVlb, i),/2 ]H~(x, s)l.  (2~) 1/2 < 5, 
where a'  -- a -  1, b' = b + l ,  J '  := [a',b']. Then for any t • J and u ,v  • 

(t - c, t + c) ,  

Yv - Y~ = H ( N ~ ,  v) - H(N~,  u) 

= ( H ( N ~ ,  v) - H(N~,  u)) + ( H ( N . ,  u) - H(N~ ,  u)) 

=H~(N~,t ' ) (v  - u) + H~(x ' , u ) (N ,  - N~) 

=Hx(Nt ,  t)(N~ - N~,) + E 

with 

E := H~(Nv, t ' ) (v  - u) + (Hx(x ' ,u)  - H x ( N t , t ) ) ( N v  - N~), 

where t '  and x' satisfy It' - t I < ¢ and Ix' - Nt[ < ¢1/2. Then using (i) and (ii), 

we have 

IEI <IH~(N~, t')[[v - u I + ]H~(x', u) - H~(Nt,  t)[[N~ - N~,[ 

<_lUs(N~, t')[(2c)l/21v - ul 1/2 + 51N~ - N~[ 

_<5(IN ~ - N~I + I v -  ull/2). 

(2) Take sufficiently small 5 > 0 determined finally in the following 2nd step. 

At this moment,  we assume tha t  

(11) 0 < 5 < inf H~(x, t)/1200. 
rE J, Ix[<_(la[Vlb[)l/~ 
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We may  assume tha t  ~ > 0 is small enough so tha t  the s ta tement  (1) holds with 

this 5 and I C [a + 2E, b - 2el. We use a similar construct ion as in the proof  of 

L e m m a  8. 

1ST STEP: Let {(un, v~); n = 1, 2 , . . . }  be a countable dense subset of 

{(x, y); - e / 2  < x < 0 < y < ~/2, s /18  _ y -  x < e/2}.  

There  exists a synchronized interval [c, d] of w containing t :=  a + s with ~/18 _< 

d - c < s /2 .  Then,  we have by (1) 

[Yd -- Ycl _>(Hx(Nt, t)  - 5 ) ) N d  - N~J - 5(d  - c) 1/2 

= ( H x ( N t ,  t)  - 5 ) (  d - c) 1/2 - 5( d - c) U2 

= ( H x ( N t ,  t) - 2 5 ) ( d -  c) U2.  

Hence, there exists n -- 1, 2 , . . .  such tha t  

IYt+~n - Yt+~, I > (Hx(Nt ,  t) - 35)(vn - u n )  1/2. 

Take the min imum n as this and define functions u :=  t + u,, and v :=  t + vn, 

which are Yj-measurable  by Theorem 5. 

Since as above we have 

(H~(Nt ,  t) - 35)(v - u)  1/2 <IY~ - Y~I 

< ( H x ( N t , t )  + 5) IN.  - N,,I + 5(v  - u) 1/2, 

we have by (11) tha t  

IN. - N~I > (1 - 1/2o0)(v - u) 112. 

Then by Theorem 3, [u, v] is a (1 - 1 / l l ) - synchronized  interval of  w. Let u r 

and v'  be the unique solution of equation (8) in Theorem 3 for this (1 - 1 / l l ) -  

synchronized interval [u, v]. 

We prove tha t  u r, v ~ is also the unique solution of the equat ion 

(12) u' ,  v '  • [u - (1/7)(v - u), v -t- (1/7)(v - u)], 

Y~, = min{Ys; s • [u - (1/7)(v - u) ,  v -t- (1/7)(v - u)]}, 

Y., = max{Y~; s • [u - (1/7)(v - u), v + (1/7)(v - u)]}. 

Take any s • [u - (1/7)(v - u), v + (1/7)(v - u)] with s ¢ u ' .  Then  by Lemma 
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7, N~ - Nu, > (1/3)is  - Ut[ 1/2. Therefore  as above, we have 

Y~ - Y~, >_(H~(t, N t )  - ( ~ ) ( N ~  - N , , , )  - (~ls - u'l ~/2 

> (  H ~ ( N t ,  t ) - 5 ) ( 1 / 3 ) 1 s  - u ' l  1/2 - 5Is - u'I x/2 

= ( H ~ ( N t ,  t )  - 4 ~ ) ( 1 / 3 ) 1 s  - u'l ~/~ 

_ > ( 1 2 0 0  - 4)5(1/3)1s  - u'l ~/~, 

so tha t  u'  is the unique solution of equat ion (12). Similarly, v' is the unique 

solution of equat ion (12). Thus, u' and v' are Yj-measurable  functions on w E O. 

We define ~o = u',  ffl = v' if u '  < v'  and ~0 = v', ~1 = u '  if v'  < u'.  

2NO STEP: Assume tha t  a sequence of Yj-measurable functions @ < ~1 < " ' "  < 

~k is defined so tha t  ~o < a + 2c and [~i-1, ~] is a synchronized interval with 

~i-1 - ~i < E for any i = 1, 2 , . . . ,  k. This is done for k -- 1 in the 1st step. 

We add (k+l to get a longer sequence with these properties.  Take the minimum 

nonnegative integer i such tha t  4(4/9)i(~k - ~k-1) < ~. Since [~k-1, ~k] is a 

synchronized interval, for exact ly one of ~ in {1/4, 4}, [~k, ~k +~(4/9) i (¢k --~k-1)] 

is a synchronized interval. Define ~k+l = ~k + 4(4/9)i(~k -- ~k-1) with this ~. 

Wha t  we have to prove is tha t  4 is chosen in a Ya-measurable way. Let 4 E 

{1/4,4} be such tha t  [t ,(] is a synchronized interval and let ~' E {1/4,4} be 

4' ¢ 4, so tha t  It, ~'] is not a synchronized interval, where we put  t := ~k, 

:= t + ~(4/9) i ( t  - ~k-1) and ~' = t + ~'(4/9)~(t - ffk-1)- Let  [t, ff"] be the 

minimal synchronized interval containing [t, if']. Then,  we can prove tha t  there 

exists p > 0 such tha t  ( 4 / 9 ) + p  < ( ~ ' - t ) / ( ~ " - t )  < 1 - p .  Therefore,  by Theorem 

2, there exists q with 1/2 < q < 1 such tha t  

IN¢, - N t l  < ql¢' - tl 1/2 

while 

I N ¢  - N i l  = Iff - tl ~/2. 

Then,  as we proved in the 1st step, we have 

I Y c  - Yt[ <_(Hx(Nt,t) + (~)IN¢, - Ntl  + (~(~' - t) 1/2 

<__(Hx(Nt, t) + 35)q(~' - t) 1/2, 

while 

l Y e  - Ytl _ > ( H ~ ( N t ,  t )  - 5 ) 1 N ¢  - N t l  - 5 ( ¢  - t) 1/2 

= ( H x ( N t ,  t)  - 2 5 ) ( ~  - t)  1/2. 
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Therefore,  by choosing small (f > 0, we have 

Ir~ ' - Y t l / ( ( '  - t)  W2 < H x ( N t , t ) ( 1  + 2q)/3,  

lYe - hi/(( - t) U2 > H x ( N t , t ) ( 2  + q)/3,  

so tha t  we can distinguish these 2 cases by the observation Y j .  Hence, ~ is 

Y j -measurable .  

Thus,  the function (k+l on w E (9 is Yj-measurable such tha t  [(k, ~k+l] is a 

synchronized interval with (k+l -- (k < C. 

FINAL STEP: We continue this process until we get ~L+I > b - ¢. Then,  ( := 

{(0 < (1 < "'" < ~L} satisfies the required properties.  This can be done by the 

same reasoning as in the final step of the proof  of Lemma 8. 

(3) Let  ( = {(o < (1 < "'" < (L} be a Yi-measurable synchronized net 

covering J .  If necessary, we repeat  the division of a synchronized interval 

[(i,(i-[-1] by [(i,('~], [('i,( 'i-{-1], [('i+1,(i-{-1] with ( ' i  -- (5(, + 4(i+1)/9 and 
( '/+1 = (4(i + 5(i+1)/9; we may assume tha t  there exists [(i, (i+1] C I i such 

tha t  (i+1 - (i is sufficiently small so tha t  Y~+~ - Y¢~ has the same sign as 

N¢~+~ - N¢~. Then,  we know from the observation Y1 whether  the synchronized 

interval [(i,¢i+1] is increasing or decreasing. Since the synchronized intervals 

[ ( j , ( j+ l ] ' s  are increasing and decreasing alternatively, we know ~ - 

sgn (Nj+ l  - N j )  for all j = 0, 1 , . . . ,  L - 1. Since 

for any t E [(j, ( j+l]  by Theorem 2, we get d N [ j  from the observation YI,  hence 

by Yj considering the limit. | 

LEMMA 9: (1) L e t  {(0 < (o < (1 < "'" < (L} be a s y n c h r o n i z e d  ne t .  L e t  

((i+1 -- ( i ) / ( ( i  - -  ( i - l )  : ~(4/9)J wi th  ~ e {1/4,4} and  j e Z for s o m e  i = 

1 , 2 , . . . , L -  1 and  w E O. I f  j > O, then  for ~1 := (~ + ~((~ - ( i - 1 ) ,  [~,  71] 

is a s y n c h r o n i z e d  in terva l  o f  w C 0 o ,  and  i f  ~l <_ ( L ,  t hen  there  ex i s t s  n w i th  

i + 1 < n <_ L such t ha t  ~ = (n .  I f j  < O, then  for 11 := (i  - ~((i+1 - ( / ) ,  [1], ~i] 
is a s y n c h r o n i z e d  in terva l  o f  oJ C O0, and  i f  ~ >_ (o, t hen  there  ex i s t s  n w i th  

O < n < i - l such  t ha t  y = (n.  

(2) For a n y  ne ighbor ing  s y n ch ro n i z e d  in tervals  In, b], [b, c] and [c, d] o f  w E ~)o, 

i f  (c - b ) / (b  - a) = 1/4 and (d - c ) / ( c  - b) = 4, t hen  [a, d] is a s y n c h r o n i z e d  

in terva l  o f  w. 
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(3) For any neighboring synchronized intervals [a, b], [b, c] and [c, d] of  w E 0o,  

i f ( e - -  b)/(b - a) = 1/4 and (d - c) / (c  - b) = 1/4, then [a - ( 9 / 4 ) ( b -  a),b] and 

[b, b + (9/4)(c - b)] are synchronized intervals o f T .  

(4) For any neighboring synchronized intervals [a, b], [b, c] and [c, d] o f t  E Oo, 

i f  (c - b)/(b - a) = 4 and ( d -  c) / (c  - b) = 4, then [b - ( 9 / 4 ) ( c -  b),c] and 

[c, c + ( 9 / 4 ) ( d -  c)] are synchronized intervals o f T .  

Proof: (1) Assume tha t  j > 0. Let K be the nearest common ancester of 

[4i-1, 4i] and [4i, 4i+1]. Let [4~-1, 4~] have level k relative to K .  Then by (2) of 

Lemma 2, [4i, 4i+1] has level k + j  relative to K.  Since k > 0, the j - th  ancester of 

[4i, 4i+1], is neighboring to [4i-1, 4i]. Let it be [4i, 7/]. Then, Y-4 i  = ~(4i-4i-1)-  

If z/_< 4L, then by (1) of Lemma 2, there exists n with i + 1 <: n _< L such that  

~1 = 4n. The proof for the case j < 0 is similar. 

(2) Let g be the nearest common ancester of [a, b], [b, c] and [e, d]. It  is 

sufficient to prove tha t  K = [a, d]. Suppose to the contrary tha t  K ¢ [a, d]. 

Then, [b, c] has level j > 1 relative to K and is not middle. Assume tha t  it 

is left. Then, [c, d] is middle since [b, c] and [c, d] have the same level. Thus 

(d - c) / (c  - b) -- 1/4, contradicting the assumption. If [b, c] is right, we have 

(c - b)/(b - a) = 4, contradicting the assumption. 

(3) Since neither [a, b] nor [b, c] is middle by the assumption, we have tha t  [a, b] 

is right and [b, c] is left. Then, the first ancestor of [a, b] is [b - (9/4)(b - a), b] 

and the first ancestor of [b, c] is [b, b + (9/4)(c - b)]. 

(4) Let g be the nearest common ancester of [a,b] and [b,c]. If K is 

not the first ancestor of [a, b] and [b, c], then [b, c] is left, which contradicts 

(d - c) / (c  - b) = 4. Hence, g is the first ancestor of [a,b] and [b,c]. This 

implies tha t  g = [ c -  (9/4)(c - b), c] and tha t  K is not an ancestor of [c, d], 

since ( c -  b ) / ( b -  a) = 4. Therefore, the nearest common ancestor of [b, c] and 

[c, d] is not their first ancestor. Thus, [c, d] is left and the first ancestor of [c, d] 

is [c, c + (9/4)(d - c)]. | 

Let 4 = {40 < 41 < "'" < 4L} and z /=  {~0 < '11 < "'" < ?~M} be synchronized 
nets such tha t  ,! is measurable with respect to 4. We say tha t  y is a r e d u c t i o n  

of 4 ifT/0 <_ 4o < 4L <_ ?]M and {~1 < *12 < "'" < *lM-1} C {41 < 42 < "'" < 4L-1} 
holds. 

THEOREM 7: For any Yj-measurable  synchronized net 4 = {~o < 41 < "'" < 4L}, 

there exists a reduction of  it consisting at most  of  3 synchronized intervals with 

the same level  
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Proof: Let ?7 ---- {~0 < /]1 < " ' "  < ~]M} be a reduction of ~ with the smallest 

number  of intervals M.  If  the levels of the synchronized intervals contained in it 

are not  the same, then there exists i = 0, 1 , . . . ,  M - 1 such tha t  

(~1~+1 - 71~)/(~1i - ~}i-1) = ~(4/9) j with ~ e {1/4, 4} and j ~ 0. 

If  j > 0, then by Lemma 9, [~/i, ~}i + ~(z}i - 7/i_1)] is a synchronized interval 

and either there exists n with i + 1 < n _< M such tha t  ~Tn = ~ + ~(~}i - ~/i-1) 

or ~/i + ~(~/i - ~/i-1) > ~}L. In  the former case, we have a further reduct ion of  

( ,  {7}o < ~/1 < "'" < 7/i < 7}n < . . .  < Y/M} with a number  of intervals less than  

M,  contradict ing the assumption on M.  In the latter case, we have a futher 

reduct ion of  ~, ~/' :=  {~0 < 7}1 < . . .  < 7}i < I}i + ~(~/i - ~}i-1)), which has a 

number  of intervals at most  M.  By the assumption on M,  it is exactly M and 

i = M - 1 .  

If  j < 0, then by Lemma 9, [~i - ~(~/i+1 - ~i), 7ji] is a synchronized interval 

and either there exists n with 0 < n < i - 1 such tha t  z/n = 7/i - ~(~/i+1 - ~/i) 

or ~}i - ~(7}i+1 - ~}i) < ~}0. In the former case, we have a further reduction of ~, 

{~}0 < ~}1 < " '" < ~ln < ~/i < "'" < YM} with a number  of intervals less than 

M,  contradict ing the assumption on M.  In  the lat ter  case, we have a futher 

reduct ion of ~, ~/' :-- {~}i - ~(z/~+s - ~i) < r}i < . - .  < ~}M}, which has a number  of  

intervals at  most  M.  By the assumption on M,  it is exactly M and i = 1. 

If  the levels of the synchronized intervals contained in ~/' are not  the same, 

we repeat  the above procedure to get finally a futher reduction of ( such tha t  it 

has a number  M of synchronized intervals with the same level. Hence, we may  

assume tha t  ~/-- {~/0 < 7/1 < "" • < ~ M )  is a reduction of  ~ which has the smallest 

number  of intervals M with the same level. 

Suppose tha t  M _> 4. Then, in the sequence of (~/i+~ -~li)/(~li  - ~ l i - ~ )  

(i = 1, 2 , . . . ,  M - 1), there exists i -- 1, 2 , . . . ,  M - 2 such tha t  the combinat ion 

((r/i-l-1 - -  ? } i ) / ( ~ ] i  - -  It / i-- l) ,  (Wi+2 - -  ? ] i + 1 ) / ( ~ ] i + 1  - -  7] i ) )  is either (1/4, 4), (1/4, 1/4) 

or (4, 4). Then  by Lemma 9, we find a further reduction of  ¢ with a smaller 

number  of intervals, contradict ing the assumption on M.  Hence M _< 3. | 

THEOREM 8: For any bounded closed interval J = [a, b] with a < b, there exists  

measurable functionals T: C ( J )  ~ [0, e¢) and G: C ( J )  ~ 0 such that  

(1) Pr[G(Y j ) ( t )  -- Nb+t -- Nb[ t < T (Y j )  ] = 1 for any t > O, and 

(2) Pr[T(Yj) < t ] _< 9 t / ( 4 B )  for any t :> O, 

where C(  J)  is the space o f  continuous functions on J and we set B :=  (b - a) /21.  

Proof: By Theorem 6, there exists a Yj-measurable synchronized net covering 



Vol. 125, 2 0 0 1  DETERMINISTIC BROWNIAN MOTION 345 

[a, b]. Taking its reduct ion obtained in Theorem 7, we get a Yj-measurable  

synchronized net ~/:= {~/0 < ~/1 < "'" < ~/M} satisfying 

(i) M < 3, 

(ii) the synchronized intervals in ~/have the same level, and 

(iii) ~/0 < a < b < ~/M- 

Define T = T(Yj) : - =  ~ ] M  - -  b and 

O, t < O, 
G(Yj)( t)  := Nb+t -- Nb, O < t < T, 

( N b + ~ - - N b ,  t > T .  

Then  (1) is clear from the definitions of T and G together  with (3) of Theorem 6. 

Let  b 6 [~/i, ~/~+1]- Then  

~/i+1 - ~/i > (~/M -- ~ /0 ) / (1  + 4 + 42)  > (b - a ) / 2 1  = B .  

Let [u, v] be the minimal synchronized interval containing b with v - u > B. 

Since [u, v] C [~/i, ~/i+1], we have T' := V -- b < ~/i+1 - b < ~M - -  b = T. 

Take t > 0 with t < (4 /9 )B  and let n = [B/t]. If T'(W) 6 [0, t), then 7 ' ( w - j t )  6 
[ j t , ( j + l ) t )  for a n y j  = 0 , 1 , . . . , n - 1 .  Hence, for a n y j  = 0 , 1 , . . . , n - I ,  we 

have 

Pr(T'(w) e [0, t)) < Vr(T'(w -- j t )  e [jt, (j + 1)t)) = Pr(~-'(w) e [jt, (j + 1)t)), 

where we used the fact tha t  the probabil i ty measure P is invariant under the 

addition. Therefore,  we have Pr(T'  < t) < 1/n, since 

n - - 1  

n Pr(T'  6 [0, t)) < E P(T' E [jt, (j + 1)t)) < Pr(T '  6 [0, B))  < 1. 
i = 0  

Thus we have (2), since P r ( r  < t) < Pr(T '  < t) < 1 /n  < 9t/(4B) for any 

t < 4B/9.  For t > 4B/9 ,  (2) holds trivially since 9t/(4B) > 1. II 

We construct  a predictor  for Yc with c > b based on the observation Yj, 

where J = [a,b]. We use G(Yj)(c) to est imate Nc - Nb. By Theorem 8, if 

c - b < T(Yj) ,  then the est imat ion is exact.  To est imate Yc = H(N~,  c), we use 

the Taylor expansion at  (Nb, b) with G(Yj)(c) for N~ - Nb: 

1H b)G(Yj)(c)2 + Hs(Sb,  b)(c b). lye := Yb + Hz(Sb ,  b)G(Yj)(c) + ~ ~z(Nb, 

Note tha t  I7 is a measurable function of the observation Yj  by Theorem 6. 

The  value can be calculated based on the observation wi thout  using any further  

information on the unknown function H than  (H1) and (H2). 
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THEOREM 9: We have 

((c-b)~ 
E [ ( ? c  - Y~)~] = o ( ( c  - b) ~) + O ~  b - a J 

as c $ b with C(b) in (2) in Section 1 as the constant in O ( ) .  

Proo~ Since 

Yc =Yb + H~(Nb,  b)G(Yj) (c)  

+ ~Hxx(Nb,  b)G(Yj) (c)  2 + Hs(Nb,  b ) ( c -  b) + o(c - b), 

Y~ - Y~ = o(c - b) holds if c - b < r (Yj ) .  If otherwise, Yc - Yc -- O((c - b) 1/2) 

since IG(Yj)(c)I  < ( c -  b) 1/2, INc - Nbl <_ ( c -  b) 1/2 and 

IG(Yj)(e)  - (No - Nb)[ = [S~(yj) - Nb[ <_ (c - b) 1/2, 

so tha t  

(]~c-Yc) 2_< (1+~) sup [H~(x ,b)12(c-b)  
lx[~[b[ 1/2 

for any fi > 0 as c --+ b. Since by Theorem 8, P r [ r (Yj )  < c - b ]  <_ 4 8 ( e - b ) / ( b - a ) ,  

we have 

E[(Yc - y~)21 =E[(Yc - Vc) 2 Ir(Yj)  ~_ c - b I Pr[7(Yg) >_ c - b] 

+ E[(Y~ - y~)2 IT(yj)  < C -- b] Pr[T(Yj)  < c - b] 

_ ((c-~)2~ 
< o ( c - b )  2 - b O k  ~ _ a  ] 

with C(b) in (2) as the constant  in O ( ) .  | 
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