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ABSTRACT

A deterministic version of the Itd calculus is presented. We consider a
model Y; = H(Ny,t) with a deterministic Brownian N and an unknown
function H. We predict Y, from the observation {Y3;t € [a,b]}, where
a < b < ¢. We prove that there exists an estimator Y: based on the
observation such that E[(Y; — Y.)2] = O((c — b)?) as ¢ | b.

1. Introduction

Deterministic Brownian motions are stochastic processes with noncorrelated,
stationary and strictly ergodic increments having 0-entropy and 0-expectation.
The self-similarity of order 1/2 follows from these properties. Such processes
have a lot of variety and have different properties. This is not the case of the
Brownian motion where the process is characterized as a process with stationary
and independent increments with 0-expectation and standard variance.

Among the deterministic Brownian motions, the simplest one is the N-process
(N¢; ¢ € R) which is defined by the author in Example 8 of [K]. It comes from a
piecewise linear function called the N;-function (in Figure 1). It is time reversible.

The aim of this paper is to develop stochastic analysis based on the N-process.
We consider a process Y; = H(Ny, t), where the function H(z, s) is twice continu-
ously differentible in z and once continuously differentible in s and H,(x,s) > 0.
The function H is considered completely unknown except for these properties.
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We want to predict the value Y, from the observation Y := {Y;; ¢ € J}, where
J = [a,b] and a < b < ¢. We prove in Theorem 9 that there exists an estimator
Y. such that

O v \21 )2 (c—b)?
(1) E((Y. - Yo)?] = ol(e - ) + 0(-—")
as ¢ | b with the following C(b) as the constant in O( ):
(2) C(b):=50 sup |H(z,b)%.
lz|<{b|/2

One of the motivations of our paper is given by Benoit B. Mandelbrot [2],
who mentioned that the simulation of the stock market by the Brownian motion
contains too much randomness. An actual market has a strong negative corre-
lation between the fluctuations of price on a day and the next day. He suggests
using the N-shaped function as the base of the simulation.

Our model has a lot of similarities to the It6 process. For example, we have an
It6 formula (Theorem 4). Nevertheless, there is a big difference between them.
Our process has 0-entropy while the It6 process has oo-entropy. Therefore, we
have a much better possibility of predicting the future. Theoretically, if we have
complete information about the function H, and complete data of Y; in the past,
we should be able to predict the future without error. But the actual setting
is with the unknown function H and the limited observation Y; for a bounded
interval J. The best we can do is order O((c ~ b)?) in the above estimate (1),
and O(c — b) in the case of an It6 process.

A sample path from an N-process repeats the N;-function in various scales.
The main idea for the prediction, called synchronization, is to find out the
positions and the scales of the appearances of Ni-function in the sample path. An
appearance of the Nj-function in a sample path is a part of bigger N;-functions
while containing smaller ones. Along the 3 line segments in an appearance of the
N;-function, the sample path either increases at the first part, then decreases and
increases, or decreases at the first part, then increases and decreases. Thus, it
has a strong correlation along the synchronized intervals, while the process itself
has noncorrelated increments.

Another motivation is to create a sample path of Brownian motion in a de-
terministic way without using a random mechanism. Our N-process is strictly
ergodic so that any chosen path realizes probablistic properties of the process.
We don’t need a randomization procedure but just take one, for example, the
N-function itself. Of course, it is not exactly like a path of the Brownian mo-
tion, but shares the quadratic structure with Brownian motion. If we take a
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derivative in some sense of the sample path, we get a white noise. Thus, our
N-process provides a method of generating a random number.

2. N-process

We consider the N-process (Ny; t € R), which is the stochastic process defined
in Example 8 of [1] for @ = 1/2. We repeat the definition in a slightly different
way as follows.
Define a continuous piecewise linear function N; (see Figure 1) on the interval
[0’ 1] by
%x, 0<z<4/9,
Ni(z) =< -3z +2, 4/9<z<5/9,
r-1, 5/9<z<L
Let Ny be the continuous piecewise linear function on [0,1] obtained by
replacing 3 line segments in Ny by self-affine images of N; or — N, keeping the 2
end points fixed, that is,

%Nl(gx), 0<z<4/9,
Ny(z) = - IN (97 —4), 4/9<z<5/9,
3t3M(Ez-3), 5/9<z<L

Let N3 be the the continuous piecewise linear function on [0, 1] obtained by
replacing 9 line segments in Ny by self-affine images of N; or —N; as before.
In the same way, we obtain N, from N,_; for n = 4,5,.... For covenience, we
define Ng by Ny(t) =t for any t € [0,1].

We prove that the function N, converges pointwise as n tends to infinity to a
continuous function, say No, on {0,1]. Let a,b € {0,1] with @ < b. The interval
la, b] is called a synchronized interval of level n if (a, N,,(a))(b, N,,(b)) is one of
the 3" line segments consisting of the graph of the function N, forn =0,1,2,....
In this case, we have for any m > n that

1. Np(a) = Np(a) and Ny, (b) = N, (b),

2. Np(a) < Np(t) < Np(b) or Ny(a) > Ny (t) > N, (b) for any t € (a,b),

3. |Nn(b) — Nu(a)| = |b— a|'/%, and

4. b—a=(2)" (3)"" for somei=0,1,...,n.

Take any ¢ € [0,1]. For any ¢ > 0, there exists n and a synchronized interval
of level n, say [a,b] with ¢ € [a,b] and |b — a| < €2. Then for any m,m’ > n,

|Ni (t) = Nor ()] < [Ny (b) — Np(a)] = |b— a]'/% < &.

Thus, N,,(t) converges as m — co. The limit will be denoted by N (t).
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Let us prove the continuity of the function Ny. Take any s,t € [0,1] with
0 <t—s < (1/9)" for some n = 1,2,.... Then there exists 2 neighboring
synchronized intervals of level n, say [a, b] and [b, ¢] such that [s,t] C [a,c]. Then
we have
INoo(t) = Noo(s)| <|Nn(b) — Nn(a)| + |Nn(c) — Nn(b)]
2 1/2 4\n/2
=[b~ a2 + |c - b/ 52(5)

Thus, the function N is continuous.

1 1
2/3
1/3
0 4/9 5/9 1 90 1

2 172 12
23=(4/9) , 2/3-173=(5/9-4/9) | 1-1/3=(1-5/9)

Figure 1. Ny, N3, N3 and Ng.

We define a function No, : R — R which is an extension of Ny, by

i 0, t<0,
Neo(t) = {Noo(t)a 0<t<,
1 t>1.

Now we randomize Ny, to get the N-process (N;; teR).
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Let © be the set of continuous functions w: R = R with w(0) = 0. We
consider © as a topological space with the compact open topology, that is, w, € ©
converges to w € © as n tends to infinity if and only if w,(t) converges to w(t)
uniformly on each bounded set of t. For w € © and s € R, we define the addition
w+ s € O (see Figure 2) by

(w+ s)(t) = w(s+t) —w(s).

2(w+s)

Figure 2. w, w+ s and 2(w + s).
For w € © and A € R, we define the multiplication \w € © by
Ow)(t) = AV 2w(A"1t).

Choose s € [0,1] randomly according to the Lebesgue measure on [0, 1] and
define Ny, + 5. Now take L > 0 and choose A € [0, L] randomly according to the
normalized Lebesgue measure on [0, L] independently of s and define e*(Ny, +5).
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Now let L tend to infinity. We prove in Theorem 1 that the distribution of the
random variable e*(No + s) on © converges weakly (i.e. in the weak* sense) as
L tends to infinity. Let P be the limiting distribution on ©. Then the stochastic
process (Ny; t € R) on the probability space (6, P) is defined by N¢(w) = w(t)
for any w € © and t € R, which is called the N-process. Let Oy be the
topological support of the measure P.

Let [a, b] be a synchronized interval of level i. We call it increasing if Ny, (a) <
Noo(b) and decreasing if Noo(a) > Noo(b). We call it left, middle or right if
there exists a synchronized interval [u, v] such that [a, b] is equal to [u, '], v/, ']
or [v,v], respectively, where we put u' = (5u + 4v)/9 and v’ = (4u + 5v)/9. For
example, [0,1] is the only synchronized interval of level 0, which is increasing.
There are 3 synchronized intervals of level 1, namely [0,4/9], [4/9,5/9], [5/9, 1],
which are increasing, decreasing and increasing, respectively and left, middle and
right, respectively.

Let X = e*(Ny + s) for some s € [0,1] and A € [0,00). Note that

et =(X(00) — X(~00))?,
1 - s =e *min{t; X(t) = X(c0)},
so that A and s are determined by X. Let {a, b] be a synchronized interval. Then
we say that [(a— s)e*, (b — s)e*] is a synchronized interval of X. We also say

that it is increasing, decreasing, left, middle or right synchronized interval of X
if [a, b] is so.

LEMMA 1: (1) Noo(t) + Noo(1 — t) = 1 for any t € R.
(2) Let [a,b] be a synchronized interval. Then we have

Noo(t) — Neo(a) = &(b— a)l/zNw(Z:Z)

for any t € [a,b], where £ is 1 or —1 according as the interval [a, b] is increasing
or decreasing, respectively.
(3) There exists a constant C such that

|Noo(t) = Noo(s)| < Clt — 5|2

for any s,t € R.
(4) The set K := {*(Noo + 5); s € [0,1], X > 0} is relatively compact in ©.

Remark 1: In Theorem 2, we prove that C in (3) of Lemma 1 can be taken
as 1.
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Proof: (1) Clear from the definitions of Ny and N

(2) The graph of N, restricted to the interval [a, b] is the image of the graph of
N, by the affine transformation sending the point (0,0) to (a, N (a)), (0,1) to
(a, Noo (D)), (1,0) to (b, Noo(a)), and (1,1) to (b, Noo(b)). Moreover, we already
remarked that Neo(b) — Noo(a) = £(b — a)'/2. Our conclusion follows from these
properties.

(3) Assume without loss of generality that 0 < s <t <1 and t—s < 1/2, since
otherwise, either the required inequality holds with C' = 2 or it follows from our
case by the symmetry or with s V0 for s and ¢t A1 for ¢t. Take the maximum n
such that there exist either 2 neighboring synchronized intervals [a,b] and {b, c]
of level n with [s,t] C [a,c]. Then we have t — s > (1/9)((b — a) A (¢ — b)), since
otherwise, we can take a larger n than this. It follows that

|Noo(t) = Noo ()| = [Noo(t) = No (5]

< [Noo(8) = Noo(a)]| + [Noeo(€) — Noo (B)]

= |b—a|*? 4 |c — b|*/?

=3((b—a) A (c—b)?

< 9|t — 5|2,
where we used the fact that either ¢ — b = 4(b—a) or ¢ — b = (1/4)(b — a) holds,
since [a, b] and [c, d] are neighboring synchronized intervals of the same level (see
(2) of Lemma 2).

(4) By (3), any function f in K satisfies |f(t) — f(s)| < C|t — s|'/? for any

s,t € R together with f(0) = 0. This implies that K is relatively compact in ©.
1

THEOREM 1: The N-process introduced above is well defined and has the same
distribution as the cocycle F for & = 1/2 in Example 8 in [1].

Proof: In Example 6 of [1], the weighted substitution (¢, n) on {0, 1} was defined

) 0+ (02) 1) (03)
(1 D04)0D)

Then we defined Q := Q(¢p, 1), the set of colored tilings associated to (¢, 77) which
is strictly ergodic with respect to the addition (R-action). Let p be the unique
invariant measure on {) with respect to the addition, which is also invariant under
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the multiplication (R, -action). Finally, we defined the 1/2-homogeneous cocycle
F on Q in Example 8 of [1]. Then

®) Fw,6) = Fw,6) = (~1)°(d = 02N (£=2)

for any w € Q2 and t € [c,d] if there exists a tile S of w with color ¢ such that

= (a,b] x [¢,d) for some a,b. For w € £, let F(w) denote the function R - R
such that F(w)(t) = F(w,t). Then, F(w) € O. Let up be the distribution of the
random variable F(w) with values in © defined on the probability space (2, u).

We want to prove that the process (Ny; ¢ € R) is well defined and has the
distribution pr. For this purpose, we prove that the distribution of the random
variable X1, := e*(Ny, + 5) converges in the weak sense to pup as L — 0o, where
(s, ) is a uniformly distributed random variable on [0, 1] x[0, L]. It is sufficient to
prove that for any sequence {L,; n = 1,2,...} with lim,_,o L, = 00, there exists
a subsequence {L_} of {L,} with lim,_,o L., = oo such that the distribution of
X' converges to ur weakly as n tends to infinity.

'I?ake any sequence {Ln; n = 1,2,...} with lim,_,o L, = 0o. There exists a
subsequence {L.,} of {L,} with lim,_,c0 L, = oo such that the distribution of
X L! converges weakly to, say, P, as n tends to infinity by (4) of Lemma 1. We
want to prove that P/ = pup.

Since 2 is strictly ergodic with respect to the addition ([1]) and the transforma-
tion F: Q — © is continuous satisfying F(w +t) = F(w) +t (Vw € Q, Vt € R),
F(Q) is strictly ergodic with respect to the addition. Hence it is sufficient to
prove that
(i) P’ is invariant under the addition, and
(ii) P'(F()) = 1.

Let L be any bounded continuous funtional on ©. Take any t € Randn € R,.
Then we have

/ (w+ t)dP'(w) = lim —/ / L(e*(Noo + ) + t))dsdA

= Jim 7 / / LA (B + ))dsd)
_ / L(w)dP'(w),

which proves (i).

Since F'(Q) is compact ([1]), to prove (ii) it is sufficient to prove that P'(F(2) )
=1 for any M > 0, where F(Q) 1 is the set of f € © such that there exists w € Q2
satisfying that the restrictions of f and F(w) to [-M, M] coincide.
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Let [ar, br] be the minimal synchronized interval of X, if it exists, containing
[-M, M] and let ¢f, = 0 or 1 corresponding to whether [ar,bz] is increasing or
decreasing. Such an interval [ar, br] exists if and only if

(4) [—Ma M] C [—se/\ (1 - s)eA]a

since [—se*, (1 — s)e*] is the unique synchronized interval of X of level 0. In
this case, take w € ) such that there exists a tile S of w with color ¢ and
S = (a, b} x [ar,br) for some a,b. Then by Lemma 1 and (3), we have

F(w,t) — F(w,ar) = Xp(t) — Xr(ar)

for any t € [-M, M] C [ag,br]. Since F(w,0) = X1(0) = 0, we have F(w,ar) =
X1 (ar) by putting ¢t = 0 in the above equality. Hence, we have F(w,t) = X(t)
for any t € [-M, M]. Thus,

(5) XLGF(Q)M

if (4) holds.
Let us estimate the probability that (4) holds.

Pr([—-M, M] C [-se*, (1 — 5)e*]) =Pr((s A (1 — 5))e* > M)
L 1
o l(sA(l—s))e"ZMde)‘

Ll
1 L
>— | (1-2Me )dA
LJo
2M
>1 — —
(6) 21—,

which tends to 1 as L tends to infinity.
Since F(Q)s is a closed set we have, by (5) and (6),

P'(F()um)) > le Pr(X, € F(Q)um) =1,
n—+o0 n
which proves (ii). ]

COROLLARY 1: The following statements hold.

(1) B = F(R2), where O is the topological support of the measure P.

(2) For any 6 € ©¢ and a,b € R with a < b, there exist s € (0,1} and A € [0, 00)
such that the restriction of § to the interval {a,b] coincides with the restriction
of e* (N, + ) to [a,b]. Moreover, in this case, {a,b] C [—se*, (1 — s)e*] holds.
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COROLLARY 2 ([1]): The space ©¢ is compact and invariant under the addi-
tion and multiplication. The addition on ©y is strictly ergodic with the unique
invariant probability Borel measure P. Moreover, P is invariant under the mul-
tiplication. The entropy of the addition is 0. The stochastic process (Ny; t € R)
is self-similar with order 1/2 and has stationary, strictly ergodic and noncorre-
lated increments with 0 entropy. Moreover, E[N,| = 0 and V[N,| = C|t| for any
t € R, where C > 0 is a constant. Furthermore, the process (Ny; t € R) is time
reversible.

Remark 2: We do not know the exact value of C in Corollary 2. A numerical
computation tells us that C = 0.1243---.

3. Synchronization

LEMMA 2: (1) For any synchronized intervals I and J, either I C J, I D J or
I' N J¢ = (@ holds, where I' and J* are the sets of interior points of I and J,
respectively.

(2) For any neighboring synchronized intervals [a, b} and [b, |, either (c—b)/(b—
a) = (1/4)(4/9)* for some integer i, or (c — b)/(b— a) = 4(4/9)* for some integer
i, where i is the level of [b, c] relative to [a,b]. Moreover, one of them is increasing
and the other decreasing.

Proof: (1) Clear from our construction of the function N.

(2) Let [u,v] be the minimal synchronized interval containing [a, b] U [b, ¢] and
let [u,u], [w/,?’], [¢,v] be the synchronized intervals of the next level, where
u' = (5u+4v)/9, v = (4u + 5v)/9. Then, there are 2 cases:

CasgE 1: [a,b] C [u,u/] and [b, ] C [/, 0'].

In this case, we have b — a = (4/9)*(4/9)(v — u) and ¢ — b = (4/9)%(1/9)(v — u),
so that (c — b)/(b— a) = (1/4)(4/9)* with ¢ := k — h, which is the level of [b,¢]
relative to [a, b].

CASE 2: [a,b] C [«/,v"] and [b,¢] C [v',v].

In this case, we have b — a = (4/9)*(1/9)(v — u) and ¢ — b = (4/9)%(4/9)(v — u),
so that (c—b)/(b—a) = 4(4/9)* with i := k —h, which is the level of [b, ¢] relative
to {a, b). |

LEMMA 3: For any increasing (decreasing) synchronized interval [a,b], we have
Ne(a) < Noo(t) < Neo(d) (Neo(a) > Noo(t) > Noo(b), respectively) for any
t € (a,b). In particular, 0 < Noo(t) < 1 for any t € R.
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Proof: Let [a,b] be an increasing synchronized interval of level n. Then, we
remarked in Section 2 that Ny (a) < Np,(t) < N, (b) or Np(a) > Np(t) > Nyu(b)
for any t € (a,b) and m > n. Since Np(a) = Nuo(a) < Noo(b) = Nin(d),
we have Ny (a) < Np(t) < Noo(b) for any ¢ € (a,b) and m > n. Take any
t € (a,b). There exists m > n and a synchronized interval [c, d] of level m such
that a < ¢ <t < d < b. Then,

Noo(a) < Noo(c) = Nin(c) < Nu(t) < Nim(d) = Noo(d) < Neo(a)
for any M > m. Letting M — oo, we have

Noo(a) < Noo{t) < Noo(a). [ |

LEMMA 4: (1) For any 0 < t < 1, we have Ny (t) < t*/2. The equality holds if
and only if [0,t] is a synchronized interval.

(2) For any 0 <t < 1, 1 — Noo(t) < (1 — t)1/2. The equality holds if and only
if [t,1] is a synchronized interval.

Proof: (1) If t € (4/9,5/9], then by Lemma 3,

Noo(t)/tY? < Noo(4/9)/(4/9)Y/% = 1.

Let 3 2
ao DAY 289 5 (4)'5 _485
) 9 729’ 9 9/ 9 7129
5 A% 61 4\* 65
= - - o - 1 - a Q1
¢ 9+(9> s ¢ (9) 81
Then we have
1 (2\* 17
Mool =3+ (5) a7 o N
1 [2\? 7
Nl =5+ (3) =5 = e Ml
Hence,
17/27
1/2 1/2 __
Noo(t)/t < Noo(a)/(s/g) - (5/9)1/2 <1
for any t € (5/9,b}, and
7/9
Noo () /1Y% < Ny (c) /62 = S/ - <1

T (485/729)1/2
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for any t € (b,d]. If t € (d, 1), then there exists k = 2,3,... such that 1 — (4/9)*
<t <1-(4/9)%+1, and

1-—- l(z)k
Noo(t)/tY? < Noo(1 = (5/9)(4/9)F)/(1 - (4/9)%)V/2 = ——33 < 1.
oo (t)/ oo (1= (5/9)(4/9))/(1 - (4/9)%) = @9 <
Therefore, Nu(t)/t'/2 > 1 holds only if t = 1 or t € (0,4/9]. For ¢t € (0,4/9],
let k = 1,2,... be such that (4/9)%+! < t < (4/9)*. Then, since [0, (4/9)%] is a
synchronized interval, we have by Lemma 1 that

Noo()/8Y/% = Noo((9/4)") /((9/4)")*2.

Since (9/4)%t € (4/9,1], Noo(t)/t/2 > 1 if and only if (9/4)¥t = 1. That is,
t = (4/9)*. This is equivalent to saying that [0,¢] is a synchronized interval.
Moreover, since the value of N (t)/t'/2 at such t is 1, we complete the proof of
(1)

(2) follows from (1) by (1) of Lemma 1. [ |

LEMMA 5: For any a,b € R with a < b, |[Neo(b) — Noo(a)| < (b — a)/2. The
equality holds if and only if [a, b] is a synchronized interval.

Proof: Ifa<b<0orl<a<b,then [No(b) — Neo(a)| = 0 < (b—a)'/2. If
a<0<1<b, then |No(b) - Now(a)| =1 < (b—a)/2. Ifa < 0 < b < 1, then
[Noo(b) = Noo(a)| = Neo(b) < bY/2 < (b—a)/2 by Lemma 4. f0 <a < 1 < b,
then [Noo(b) — Noo(a)| = 1 = No(a) < (1 — a)/2 < (b — a)'/? by Lemma 4.

Finally, assume that 0 < a < b <1 and Noo(a) = Noo(a), Noo(b) = Noo(b)-
Let [c,d] be the minimal synchronized interval containing [a,b]. We assume
without loss of generality that the interval [c, d] is increasing. Let ¢’ = (5¢+4d)/9
and d’' = (4c + 5d)/9. Then, the intervals [¢,c], [¢,d'], [d',d] are synchronized.
By the assumption, [a,b] is not contained in any of these intervals. Hence, there
are 3 cases:

CasEl: a<d <b<d,
CASE 2: ¢ <a<d <b,and

CASE 3: a<c <d <b.
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In Case 1, by Lemmas 1, 3 and 4, we have

|Noo(b) - Noo(“)' < (Noo(cl) - Noo(a')) v (Noo(c,) - Noo(b))

=(c' - c)”zNoo(Z:Z) v (d - c')1/2Nw((11)’__c;’)

! _a\1/2 b—c \1/2
1 oa1/2(C — @ ' Nn1/2
<(@-o (c’—c) v (@ -c) (d’—c’)
:(cl__a)l/2v (b_cl)1/2
< (b—a)'/2

In Case 2, by Lemmas 1, 3 and 4, we have
|Noo (b) — Noo ()] < (Neo(a) — Neo(d')) V' (Neo(b) — Neo(d'))

z(d/__cl)l/2Noo (d —(l) Vv (d"d,)l/2Noo (b—d>

d—c d—d
< (d - )2 (j_;cﬁ) y (d—d)7? (3—:—3—) -
=(d'-a)/2v (b—-d)/?
< (b—-a)V2

Let us consider Case 3. Let A := Noo(¢') — Noo(a) and B := N (b) — N (d').
Then we have A > 0 and B > 0 by Lemma 3. By Lemmas 1 and 4, we have
A? < ¢ ~aand B? < b—d'. Moreover, Ny (d') ~ Noo(c') = —(d’' — ¢')}/2. Hence,

(Noo(b) — Neo(a))? = (A+ B = (d' - ¢)!/?)?
=A% 4 B?4 (d' - ')+ 24B - 2(A+ B)(d' — &)'/?
(7) <b-—a+24AB-2(A+ B)(d — )2
Since A < (¢ —¢)/2 = 2(d' — ¢)/? and B < (d — d')1/? = 2(d' — ¢')*/2, we have
2AB — 2(A+ B)(d' - ¢)/?
<Ad -2 . B+A-2d -2 - 24+ B)(d -V =0
with equality only if A = (¢/ — ¢)'/? and B = (d — d')1/2. Therefore by (7), we

have | Ny (b) — Noo(a)] < (b— a)'/? with equality only if a = c and b = d and the
interval [a, b] is synchronized. |

LEMMA 6: Let s € [0,1] and X € [0,00) be arbitrary and let X := e*(No + s).
(1) For any interval [a,b] (a < b), we have | X (b) — X (a)| < (b— a)1/2.
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(2) The following statements for an interval [a, b] (a < b) are equivalent to each
other.

(1) [a, b} is a synchronized interval of X .

(i) X(a) # X (b) and

X() - X(0) = b= 0N (1=2)
for any t € [a,b], where we set £ := sgn(X(b) — X (a)).
(ii) | X (0) - X (a)} = (b - a)*/>.

Proof: (1) follows from Lemma 5.
(2) It is clear that (ii) implies (iii). That (i) implies (ii) follows from Lemma
1. That (iii) implies (i) follows from Lemma 5. |

Let w = (N¢(w); t € R) be an arbitrary sample path of the N-process belonging
to ©g. Then by Corollary 1 its restriction to any bounded set is a restriction
to the same set of some of X in Lemma 6. An interval [a,b] (¢ < b) is called
a synchronized interval of w if it is a synchronized interval of a function X
as in Lemma 6 which coincides with w on [a — 4(b — a), b+ 4(b — a)]. This is
well defined since it is independent of the choice of X by Lemma 6. It is called
increasing, decreasing, left, middle or right if it is so in X as above. We
cannot count the level of a synchronized interval of w, but we can compare the
levels between synchronized intervals. For two synchronized intervals I and J of
w, J is said to have level n (n € Z) relative to I if there exists X as in Lemma
6 which coincides with w on an interval containing I U J and m > 0 such that
I and J are synchronized intervals of X with levels m and m + n, respectively.
In particular, they are said to have the same level if n = 0 in the above. If two
synchronized intervals I and J of w satisfy I C J and I has level n relative to J,
we say that J is the n-th ancester of I.

THEOREM 2: For any w € ©g and an interval {a,b] (a < b), |w(b) — w(a)] <
(b—a)/? with equality if and only if [a, b] is a synchronized interval of w. If [a, ]
is a synchronized interval of w, then

w(t) —w(a) = (b — a)1/2Noo(It)— a)

—a

for any t € [a,b], where we set £ := sgn{w(b) — w(a)).

Proof: Clear from Lemma 6. |
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LEMMA 7: For any t with 0 <t < 1, Noo(t) > (1/3)t%/2.

Proof Take k = 0,1,2,... such that (4/9)¥*! < ¢t < (4/9)%. The minimum
value of Ny (s) for (4/9)F*! < s < (4/9)* is (1/3)(2/3)*, attained when s =
(5/9)(4/9)%. Therefore, we have

N2 (1/3)(2) =) (5) " 2 apee

For any w € ©¢ and € > 0, a closed interval I is called a (1 —¢)-synchronized
interval of w if there exists a synchronized interval J of w with |[INJ|/|TUJ| >
1—e.

THEOREM 3: Let w € ©gy. Then the following statements hold.

(1) For any € > 0, there exists 6 > 0 such that for any interval [a,b] (a < b), if
|lw(b) — w(a)| > (1 —8)(b— a)'/2, then [a,b] is an (1 — €)-synchronized interval of
w. In fact, for e < 1/10, we can take 6 = ¢/18.

(2) For any 6 > 0, there exists € > 0 such that for any interval [a,b] (a < b), if
[a,b] is an (1—¢)-synchronized interval of w, then |w(b) —w(a)| > (1-8)(b—a)l/2.
In fact, for § < 1, we can take ¢ = (§/4)%.

(3) If I = [u,v] is a (1 — €)-synchronized interval of w with 0 < & < 1/10, then
there exists a unique solution in v’ and v’ of the equation:

(8) u, v €fu—(1/T)(v—u), v+ (1/7)(v - u)],
w(u') = min{w(t); t € [u— (1/7)(v—1u), v+ (1/7)(v—u)]},
w(v') = max{w(t); t € [u— (1/7)(v—u), v+ (1/7) (v —u)]}.

Let this solution be w', v'. Then the interval J defined as J = [u/,v'] ifu’ < v’ and
J =[] ifv’ < isasynchronized interval of w such that |[INJ}/|[IUJ] > 1—¢.

Proof: (1) Take any e with 0 < &€ < 1/20. Assume that [a, d] is not a (1 — 2¢)-
synchronized interval of w. Let [¢,d] be a minimal synchronized interval of w
containing [a 4+ e(b— a), b —e(b— a)]. We assume without loss of generality that
[e,d] is increasing. Let ¢’ = (5¢ + 4d)/9 and d' = (4¢ + 5d)/9. Then, by the
minimality of [¢,d] and the assumption that [a,b] is not (1 — 2¢)-synchronized,
we have 6 cases.

Case l: c—eb—a)<a<c+elb—a)and ' +e(b—a) <b<d.

CASE2: c—elb—a)<a<c+e(b—a)and d <b<d-e(b-—a).
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CasE3: c+e(b—a)<a<c —eb—a)andc +e(b—a)<b< d.
Case 4: ct+e(b-a)<a<c —e(b—a)andd <b<d+e(b-a).
CASES: —¢elb—a)<a<d+eb—a)andd +e(b—a)<b<d+e(b—a).

CAsE6: d+e(b—a)<a<d —eb—a)andd +e(b—a)<b<d+e(b—a).
In Case 1, by Theorem 2 and Lemma 7, we have
|w(b) — w(a)] =(w(c') — w(a)) — (w(c) — w(b))

_
S(ci _a)l/2 _ (d/ _ cl)l/2N°o (;1 ~‘;)

A

<@ - a2 - (@ - ) (=5 "
(¢ = )2 = (1/3)(6 - )2

(b= a)'/? — (1/3)(e(b - @))'/?

(b= 0)2(1 - (/9.

IA N

Hence, taking § := (¢/9)/2 > ¢/9 for 2¢, we have (1).

In Case 2, by Theorem 2 and Lemma 7, we have

(w(b) ~ w(a))®
=(A+B-0C)?
<(d-a)+(b-d)+(d -c)+24B - 2AC - 2BC
=b—a+24AB ~ (A+ B)(2/3)(d — ¢)'/?
<b—-a+(2/3)(d-c)"/?B+ AB — (A+ B)(2/3)(d — ¢)*/?
<b-a- A(w(d) - w(d) - B)
=b-a~ ((w(c) - w(c)) - (wla) - w(e))(w(d) — w(b))
<b—a—((2/3)(d=)/? = la—c|'/*)(1/3)(d - b)*/?
<b-a—((2/3)((1 - 206 - a)/2 = (b - 0)/2) (1/3)(e(b — 0))*?
<b-a-—(1/12)e'%(b - a)
< (1-€2/12)(b - a),

where we put A := w(¢') — w(a), B := w(b) — w(d') and C = w(c) — w(d').
Hence, taking & := £'/2/12 > ¢/9 for 2¢, we have (1).
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For Case 3, by Theorem 2 and Lemma 7, we have

(w(b) — w(a))® =(A - B)®
<(d'—a)+(b-c)-2A4B
<b—a—2(1/3)(c' — a)"2(1/3)(b - ¢)/?
<b—a—2((1/3)/2(b — a)/?)?
<= (2¢/9)(b - a),

where we put A := w(c’) — w(a) and B := w(c’) — w(b). Hence, taking § := 2¢/9
for 2¢, we have (1).

In Case 4, if &’ < b < d’'+e(b—a), then there exists b’ with ¢/ +e(b—a) < b < d'
and w(b') = w(b). Hence (1) follows from Case 3 since

lw(b) = w(a)| =|w(®') — w(a)|
<(1-(2¢/9))(' - o)
<(1 = (2¢/9))(b - a).

Now assume that d’ +e(b—a) < b <d+¢e{b—a). By Theorem 2 and Lemma 7,
we have

(w(b) ~w(a))® =(A+ B -C)?
<(d—a)+(b-d)+(d —-)+24AB - 2AC - 2BC
=b—a+24B - (A+ B)(2/3)(d - ¢)*/?
<b—a+ A(2/3)(d—¢)Y? + AB — (A+ B)(2/3)(d — ¢)*/?
<b-a -~ (w(c) ~w(c) - A)B
<b—a—(1/3)(a—o)"2(1/3)(b~ d)/?
<b—a—(1/9)e(b - a)
=(1-(e/9))(b - a),

where we put A := w(c') —w(a), B := w(b) — w(d'), and C = w(c') — w(d').
Hence taking 4 := ¢/9 for 2¢, we have (1).

Case 5 and Case 6 follow from the previous cases by symmetry.

(2) Let 0 < € < 1/10 and let {a, b] be a (1—¢)-synchronized interval. Then there
exists a synchronized interval [c, d] with |a —¢| < 2¢(b—a) and {b—d| < 2¢(b—a).
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Then by Theorem 2, we have

[a(8) ~ (@) () ~ w(e)] ~ (@) ~ (@) ~ o) ~ wld)]
>(d-c)Y% —|a—c'? - |b—d|'/?
>(b—a—e(b—a))/? - 2(2(b - a))¥/?
>(1 —4¢Y?)(b - a)V/2.

Thus, for any 6 with 0 < § < 1, we have (2) by taking € = (5/4)2.

(3) Assume without loss of generality that w(a) < w(b). Then there exists a
synchronized interval J = [u/,] such that [INJ|/[ITUJ| > 1 — €. Moreover,
u',v is the unique solution of equation (8). [ |

4. Stochastic integral

Let L = L{w) be a measurable function of w € Oy taking a value in positve
integers. Let {(o < {1 < ...} be a finite or infinite sequence of measurable
functions of w € ©g such that [(;,(;+1] is a synchronized interval of w € ©g
for any 4 = 0,1,... and (g is defined for any w € ©p. We call a sequence
¢ :={l < ¢1 < --- < (L} a synchronized net. If, for an interval I, I C
[C0,¢z] holds for any w € O, we say that { covers I. We denote || ¢ |:=|
maxg<i<L-1(Ci+1—G) [|loo- Let C be a sub-o-field of the probability space (©o, P).
If the above L and (;ar (i =0,1,...) are measurable with respect to C, then we
say that ¢ is measurable with respect to C or ¢ is C-measurable. If {Y} is a
set of measurable functions on the probability space (g, P), then we say that
is {Y'}-measurable if it is measurable with respect to the o-field generated by the
functions in {Y}. Let { ={{o < 1 <~ < }andn={n <m <--- <k}
be synchronized nets. If for any w € Oy, { C n holds between the sets of values
of functions in ¢ and 7, and if 77 is measurable with respect to ¢, we say that 7 is
a refinement of (.

LEMMA 8: Let J be a bounded closed interval with J = [a,b] (a < b). Then, for
any bounded closed interval I with I C J* and € > 0, there exists a synchronized
net  covering I with || ¢ ||< & which is measurable with respect to dN|;, where
aN|; := {N; — N,;s,t € J}.

Proof: We may assume that ¢ > 0 is small enough so that I C [a + 2¢,b — 2¢].

18T STEP: Let {{un,v,); n=1,2,...} be a countable dense subset of

{(z,y);—e/2<z<0<y<e/2 e/18<y—z<e/2}.
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Since there exists an synchronized interval [c, d] of w containing a+¢ with £/18 <
d—c<¢/2, for § with 0 < § < 1/200, there exists n = 1,2,... such that

lw(a+e+v,) —wla+e+u)| > (1 —8)(vy — un)/2.

Take the minimum n as this and define dN| j-measurable functions v := a+e+u,
and v := a + € + v,,. Then by Theorem 3, [u,v] is (1 — §’')-synchronized interval
of w for some &' < 1/10. Let «' and v’ be the unique solution of equation (8)
in Theorem 3 for this (1 — §')-synchronized interval [u, v]. Then the functions '
and v’ of w € © are measurable with respect to dN|;. We define (o = v/, {3 =/
ifu' <v'and (o=, (= ifv' <.

2ND STEP: Assume that a sequence of dN|j-measurable functions {p < (3 <
+++ < (i is defined so that (o < a + 2¢ and [(;_1,¢;] is a synchronized interval
with {; — (;1 <eforany i=1,2,...,k. This is done for £ = 1 in the 1st step.

We add (k41 to get a longer sequence with this properties. Take the minimum
nonnegative integer i such that 4(4/9)*(¢x — (k1) < e. Since [Cx-1,Ck] is a
synchronized interval, for exactly one of £ in {1/4,4}, [(x, Ce +£(4/9)* (e — (1))
is a synchronized interval. Define (xy1 = Cx+£(4/9)*((k —Cx—1) With this £. Since
& can be chosen in a dN|j-measurable way by Theorem 2, (x41 is measurable
with respect to dN|; such that (i1 — ( <e. '

FINAL STEP: We prove that we can continue this process until we get (r4+1 >
b— 2e. Then, ¢ :={{o < {1 <--- < (r} satisfies the required properties.

The only possible obstruction against this is that {j converges to some point,
say 1 < b—¢ as k — oco. We prove that this is impossible. To the contrary,
suppose that this is the case. Then, there exists K such that for any k > K, the
1 in the description of the 2nd step is chosen as i = 0, so that all synchronized
intervals [Cg, Ckt1] for £ = K, K +1,. .. have the same level. All consecutive 2-3"
synchronized intervals of the same level contain a synchronized interval of level —n
relative to them for any n = 1,2,.... A synchronized interval of level —n relative
to the synchronized interval [(x,(x+1] has length at least (9/4)"((x+1 — Ck)-
Therefore, (x42.3» — Ckx > (9/4)"(Ck+1 — Cx), which is a contradiction since,
letting n — 0o, we have 77— (i in the left-hand side and oo in the right-hand side.
]

Let A(w, s) be a function on Oy X R which is measurable in w and continuous
in s for any fixed w. Then for any a,b € R with a < b, we define a stochastic
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integral [’ AdN, as follows:

L-1

(9) / AdN,; = "}1"111 ZO A(w7 Ci)(NCi+1 - NCi)
Q—a 1=
Cr—+b

if the limit in the right-hand side exists, where ( = {(o < (1 < --- < (L} isa
synchronized net.

THEOREM 4: Let H(z,s) be a real valued function of x,s € R which is twice
continuously differentiable in ¢ and once continuously differentiable in s. Then for
any a < b, the stochastic integral f: H,(Ny,t)dN; exists and is (Hz); V dN| ;-
measurable with J = [a,b], where (H;)y := {H(Ny,t);t € J}. Moreover, the
following formula holds:

b b 1
(10) H(Ny, b)— H(Nq, a) = / Ha(Ny, £)dN,+ / (5 Haa Ny, 1)+ Hy(Ny, )t

a
Proof: The (H;)y Vv dN| ;-measurability of the stochastic integral follows from
Lemma 8 if it exists, by taking the limit (o J @ and {; 1 b. Therefore, it suffices
to prove the existence of the stochastic integral and formula (10). For a net { =
{C() < << CL}, denote

L-1

B(() =Y H.(N¢,G)(Ne,,, — N,).

i=0

Then, by the Taylor expansion of H and the continuity of H, H,, and H, in
(z, s) as well as the sample path Ny in ¢, as || ¢ || = 0, (o — e and (1 — b we
have

H(Nbv b) - H(Nava)

= (H(Ngiyy, Giv1) = H(Ng, G)) +o(1)

= ' (Ha:(NCn Ci)(N(,+1 - NC.’) + %wa(NCn C’i)(NCi+1 - NC;‘)Z
+ Hy(Ng,, G)(Gir1 = G) + 0(Gigr — &) +0(1)
-1
=B(0)+ 3 (el )+ HilNG, 6)) G =G + o(1)

=B(¢) + /a ’ (1 Haa(Ny, £) + Hy(Ny, £))dt + o(1),
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where we used the fact that (N¢,,, — N¢,)* = (i+1 — (. Hence, B(() converges.
Thus, the stochastic integral exists and we have (10). ]

5. Prediction

Let H(z,s) be a real valued function of z, s € R such that

(H1) H is twice continuously differentiable in z and once continuously
differentiable in s, and

(H2) H,(z,s) > 0 for any z,s € R.

We consider the stochastic process Y; = H(Ny,t) (£ € R). Our problem is
to predict Y; for ¢ ¢ J from the observation Yy := {Y;; t € J}, where J is a
bounded closed interval with nonempty interior. The function H is considered to
be unknown except for the property (H1) and (H2). All the measurable functions
of the observation Y; we construct in the following do not need any further
knowledge on the unknown function H.

THEOREM 5: Foranyw € ©g andt € R,

Y, Y,
H, (N, t) = limsup |_1_1u|§ X
u;a;—tt (’U - u) /
Let t1, t2 with t; < t3 tend to t, attaining the limsup in the right-hand side of
the above equality. Let t;’ = (511 + 4t2)/9 and t5' = {4ty + 5t3)/9. Then,

Yy +h + Yy Y,

sz(Nt, t) —_—% lim

(t2 _ tl)l/z ’
3.. Y, —9Y:, + 3Y:, +5Y;
H,(Ny,t) =3 lim 2 (tt; — tl)lt/22 tz

Therefore, ift € J, then those quantities H;(N¢,t), Hy»(Ny, t) and He(Ny, t) are
measurable functions of the observation Y;.
Proof: Since, by the Taylor expansion of H, we have
Y, — Yy =H(N,,v) — H(Ny, u)
= Ho(Ne, (N, — No) + 3 Haa (N0, ) (N, — No)?
+ Hg(Ny, t)(v — u) + o(v — u)

as u,v — t, by Theorem 2 and (H2), we have

- ‘KJ_Yu| . |Nv“Nu|
hﬁ;\p CEALE =H; (N, 1) hﬂ;gp =02

=Hy(Ng,t).
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By Theorem 3, the limsup is attained if and only if u, v — ¢, so that [u, v] is an
(1 — &)-synchronized interval of w with ¢ — 0. Therefore, the interval [t1,t2] as in
the statement of our theorem satisfies this condition. Furthermore, since we can
approximate the (1 — £)-synchronized interval [¢,, 3] by a synchronized interval
close to it and approximate the following quantities for the former by those for
the latter with small errors, we may assume that [t1,t] itself is synchronized.
Consider the Taylor expansions for

H(Ntz’ y tzl)_H(Nt1'7 tll)y
H(Ntw tZ)_H(Nt1’7 tll)a
H(Ny,,t2)—H(Ny,, t1),

and using the relations

ta' —t1' =(1/9)(t2 — t1),
ta —t1' =(5/9)(t2 — t1),
Ny — Ny = — (1/3)€(t2 — t1) 2,
Ny, — Ny =(1/3)4(t2 — t1)Y2,
Ny, — Ny, =€(t2 ~ t1)"/2,

where & = sgn(Ng, — Ny, ), we have

Vi, — Vi, = — (1/3)6H (Ny, £)(t2 — £1)Y2 + (1/18) Hyo (N, t) (82 — t1)
+ (1/9)H,(Ny, t)(t2 — t1) + o(t2 — t1),

Y, — Ve =(1/3)EH,(Ny, t)(ta — t1)Y? + (1/18) Hyo (Ng, t) (2 — t1)
+ (5/9)H,(Ny, t)(t2 — t1) + o(ta — t1),

and
1
Yi, = Yo, =¢Ha(Noy t)(t2 — 1)/ + 5 Haa (N1, ) (82 = )

+ H (N, t)(t2 — t1) + o(t2 — t1).

By solving the above linear equation on Hz{Ny,t), Hy(Ny,t), Hi(Ny,t) and
letting t5 — t; — 0, we get the required formulas for H,,(Ny,t) and Hy(Ng,t).

It is clear from the above formulas that if ¢ belongs to the interior of J,
then the quantities H,,(N;,t) and Hy(Ny,t) are measurable with respect to the
observation Y. It follows from the continuity that the same result holds for any
ted. 1
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THEOREM 6: Let I, J be closed intervals with J = [a,b] (a < b) and @ # I' C
IC (a,b).

(1) For any § > 0, there exists € > 0 such that for any t € J and u,v €
(t—e,t+e),

V,-Y.= Hz(Nt,t)(Nv - Nu) +E
with
,EI < 6(1NU - Nu‘ + ,‘U - u,1/2)‘

(2) For any € > (), there exists a Yj-measurable synchronized net covering I
with || ¢ [{< e.

(3) dN|; is measurable with respect to the observation Y;. Hence, both terms
in the right-hand side of (10) are Yj-measurable.

Proof: (1) For any given é > 0, take € with 0 < ¢ < 1 satisfying
(i) [Hy(z',s") — Hy(z, s)| < 6 for any (z,s) and («/, s’} with

s, el |s—¢<e, |z, |2’ < (|a')VB')? and |z — 2’| < €'/2,

(ll) supseJ“ lz|<(la!|V|b'])1/2 |H3(.Z', S)l . (25)1/2 < (S,
where ' = a—1, ¥ =b+1, J := [a,V]. Then for any t € J and u,v €
(t—e,t+e),
Y, — Y, =H(N,,v) - H(N,,u)
=(H(N'lh ’U) - H(Nlh U)) + (H(N’w U’) - H(N’u7 ‘ll,))
=H,(N,,t") (v —u) + Hy(z',u)(N, — Ny)
=H,(N¢,t)(N, —= N,)+ &
with
Ei= Hy(N,,t) (v — u) + (Hg(2',u) — Hy (N, ) (N, — Ny,),
where ' and z' satisfy |t' — ¢| < € and |z’ — N¢| < £1/2. Then using (i) and (ii),
we have
=] <|Hy(No, t)|[v — uf + [Hz (2", u) — Hy(Ny, ¢)|[Ny — Ny |
<|H (N, 1')[(26) |0 — u|'/? + 8|N, — Ny|
<O(INy = Ny |+ v — uf'7?).
(2) Take sufficiently small § > 0 determined finally in the following 2nd step.
At this moment, we assume that

11) 0<d< H,(x,t)/1200.

inf
teJ, |z|<(Ja|V|b])1/2
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We may assume that £ > 0 is small enough so that the statement (1) holds with
this 6 and I C [a+ 2¢,b — 2¢]. We use a similar construction as in the proof of
Lemma 8.

1T STEP: Let {(un,vn); n =1,2,...} be a countable dense subset of
{(z,y);—e/2<z<0<y<e/2 e/18<y-z<e/2}.

There exists a synchronized interval [c, d] of w containing ¢ := a + € with /18 <
d — ¢ < £/2. Then, we have by (1)

Yy — Y| >(H,(Ny,t) — 6)|Ng — N| — 8(d — ¢)*/?
=(Hy(N¢,t) — 86)(d - ¢)*/% = §(d — )'/?
=(H,(Ny,t) — 20)(d - ¢)"/2.

Hence, there exists n =1, 2,... such that
\Yito, = Yitu, | > (Ho(Ne, t) — 38)(vn un)l/z'

Take the minimum n as this and define functions u := ¢ + u,, and v := ¢t + v,
which are Y -measurable by Theorem 5.
Since as above we have

(Hg(Ny, t) — 38) (v — u) /2 <|Y, - Yy
<(Hoz(Ny,t) + 6)[N, — Ny | +6(v — u)'/?,
we have by (11) that

IN, — N, | > (1 —1/200)(v — u)*/2.

Then by Theorem 3, [u,v] is a (1 — 1/11)-synchronized interval of w. Let u’
and v’ be the unique solution of equation (8) in Theorem 3 for this (1 —1/11)-
synchronized interval [u, v].

We prove that v/, v’ is also the unique solution of the equation

(12) u, v €u—(1/T)(v—u), v+ (1/7)(v — u)],
Y, = min{Y;; s € [u— (1/7)(v —u), v+ (1/7)(v — u)]},
Y, = max{Yy; s € [u— (1/7)(v—u), v+ (1/7)(v — u)]}.

Take any s € [u— (1/7)(v —u), v+ (1/7)(v — u)] with s # «’. Then by Lemma
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7, N, — Ny > (1/3)|s — u'|'/2. Therefore as above, we have

Y, — Yur 2(Ho(t,Ng) — 6)(N, — Nyr) — 4[5 — |2
> (Hy(Ny, t) — 6)(1/3)]s — u'|V/2 — b]s — u/|'/?
=(H,(Ny,t) — 46)(1/3)[s — u'|*/?
>(1200 — 4)8(1/3)]s — u'|/2,

so that «' is the unique solution of equation (12). Similarly, v’ is the unique
solution of equation (12). Thus, v’ and v’ are Y;-measurable functions on w € ©.
We define (g =/, (;=v ifv' <v and (=0, =o' if v/ <.

2ND STEP: Assume that a sequence of Yj-measurable functions (p < {1 < --- <
(x is defined so that (p < a + 2¢ and [(;—1, ;] is a synchronized interval with
Gi-1—¢ <eforanyi=1,2,...,k Thisis done for Kk =1 in the 1st step.

We add {11 to get a longer sequence with these properties. Take the minimum
nonnegative integer i such that 4(4/9)*(x — (k—1) < e. Since [(x-1,Ck] is a
synchronized interval, for exactly one of £ in {1/4,4}, [Ck, Gk +£(4/9)*(Ck — Ck—1)]
is a synchronized interval. Define (xq1 = Ck + £(4/9)%(Ck — Cx—1) with this &.

What we have to prove is that £ is chosen in a Yj-measurable way. Let £ €
{1/4,4} be such that [t,(] is a synchronized interval and let £ € {1/4,4} be
& # &, so that [t,('] is not a synchronized interval, where we put ¢ := (x,
¢ =t +£(4/9)(t — (k1) and ' = t + £(4/9)*(t — Ck—1). Let [t,¢"] be the
minimal synchronized interval containing [t,{’]. Then, we can prove that there
exists p > 0 such that (4/9)+p < (¢'—1)/(¢" —t) < 1—p. Therefore, by Theorem
2, there exists ¢ with 1/2 < ¢ < 1 such that

INg: — Ni| < ¢/ - #]*/2

while
IN¢ = Nyf = |¢ - ¢|'/2.

Then, as we proved in the 1st step, we have

Yer — Ve <(Ho(Ni,t) + 8)[Ne — Ny +6(¢ —)'/?
<(Ho(Ng,t) + 38)q(¢ — t)'/2,
while
e — Yi| >(Ho(Ny, t) = 6)|Ng = Ny| — 6(C — )2
=(Hy(Ny, t) — 20)(¢ — )*/2.
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Therefore, by choosing small § > 0, we have

Yo ~ Yi|/(¢' — 6)Y/2 <H, (N, t)(1 + 29)/3,
|Ye — Y2l /(¢ — )2 > H, (N, t)(2 + q)/3,

so that we can distinguish these 2 cases by the observation Y;. Hence, ¢ is
Y,;-measurable.

Thus, the function (x4+1 on w € © is Yj-measurable such that [(x, (k4] is a
synchronized interval with (xy1 — (i < &.

FINAL sTEP: We continue this process until we get (1,41 > b —¢. Then, { :=
{Co < {3 < -+- < (1} satisfies the required properties. This can be done by the
same reasoning as in the final step of the proof of Lemma 8.

(3) Let ¢ = {¢o < (1 < --+ < (L} be a Yi-measurable synchronized net
covering J. If necessary, we repeat the division of a synchronized interval
([Gis Gia] by [GyCils €6 Ciqaly [Cign, Ginn] with 'y = (5¢; + 4Cz’+1)/9 and
¢'i41 = (4G + 5Ci41)/9; we may assume that there exists [(;, {i+1] C I* such
that (;41 — (; is sufficiently small so that Y, , — Y¢, has the same sign as
N¢;;1 — N¢;. Then, we know from the observation Y; whether the synchronized
interval [;,{i+1] is increasing or decreasing. Since the synchronized intervals
[¢j,¢j+1)’s are increasing and decreasing alternatively, we know ¢§ =
sgn(Nj41 — Nj) forall j =0,1,...,L — 1. Since

t—¢
N; — N¢. = £(t — ()2 Noo [ ——22
t ¢ 5( C]) Oo(Cj+1_<j)
for any t € [(j,(;j+1] by Theorem 2, we get dN|; from the observation Y;, hence
by Y; considering the limit. |

LEMMA 9: (1) Let {{o < (o < {1 < --- < (.} be a synchronized net. Let
(Gt = C)/(Gi = Gi—1) = €(4/9)7 with & € {1/4,4} and j € Z for some i =
1,2,...,L—-1andw € ©. If j > 0, then for n := ¢ + &(¢; — Ci-1), [Giy 7]
is a synchronized interval of w € Oy, and if n < (g, then there exists n with
i+ 1 < n <L such that y=(,. If j <0, then for n:= §; — £(Civ1 — &), 1, G
is a synchronized interval of w € Oy, and if 5 > (o, then there exists n with
0 < n <i-—1 such that n = (,.

(2) For any neighboring synchronized intervals [a, b], [b, ¢] and [¢,d] of w € Oy,
if (¢c—b)/(b—a) =1/4 and (d — ¢)/(c — b) = 4, then [a,d] is a synchronized
interval of w.
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(3) For any neighboring synchronized intervals [a, b], [b, ¢] and [¢, d] of w € Oy,
if (¢—b)/(b—a)=1/4 and (d — ¢)/(c — b) = 1/4, then [a — (9/4)(b— a),b] and
[b,b+ (9/4)(c — b)] are synchronized intervals of w.

(4) For any neighboring synchronized intervals [a, b}, [b, ¢] and [c,d] of w € Oy,
if (c—b)/(b—a) = 4 and (d — ¢)/(c — b) = 4, then [b — (9/4)(c — b),c] and
[ey e+ (9/4)(d — ¢)] are synchronized intervals of w.

Proof: (1) Assume that j > 0. Let K be the nearest common ancester of
[¢Gi—1, ¢] and [G, Ciya)- Let [i—1, ] have level k relative to K. Then by (2) of
Lemma 2, [(;, (;+1] has level k+j relative to K. Since k > 0, the j-th ancester of
[Ciy Cit1], is neighboring to [¢;—1, ¢;]- Let it be [¢;, n]. Then, n—{ = (¢ —Gi—1)-
If 5 < (r, then by (1) of Lemma 2, there exists n with ¢ + 1 < n < L such that
11 = (,. The proof for the case j < 0 is similar.

(2) Let K be the nearest common ancester of [a,b], [b,c] and [c,d]. It is
sufficient to prove that K = [a,d]. Suppose to the contrary that K # [a,d].
Then, [b,c] has level j > 1 relative to K and is not middle. Assume that it
is left. Then, [c,d] is middle since [b,c] and [c,d] have the same level. Thus
(d — ¢)/(c = b) = 1/4, contradicting the assumption. If [b,c] is right, we have
(c —b)/(b~ a) = 4, contradicting the assumption.

(3) Since neither [a, b] nor [b, ¢] is middle by the assumption, we have that [a, b]
is right and [b, c] is left. Then, the first ancestor of [a,b] is [b — (9/4)(b — a), b]
and the first ancestor of [b,c] is [b, b+ (9/4)(c — b)].

(4) Let K be the nearest common ancester of [a,b] and [b,¢]. If K is
not the first ancestor of |a,b] and [b,¢], then [b,c] is left, which contradicts
(d —c)/(c — b) = 4. Hence, K is the first ancestor of [a,b] and [b,c]. This
implies that K = [¢ — (9/4)(c — b), ¢] and that K is not an ancestor of [c,d],
since (¢ — b)/(b — a) = 4. Therefore, the nearest common ancestor of [b, ¢] and
[c,d] is not their first ancestor. Thus, [c,d] is left and the first ancestor of [c, d]
is [, ¢+ (9/4)(d - ¢)). |

Let (={Co < ¢ <--<(}and n={ng <m <--- < np} be synchronized
nets such that n is measurable with respect to (. We say that » is a reduction
of (ifno < o< Cr <nmand {m <m < - <nu} C{G << < (1}
holds.

THEOREM 7: For any Y;-measurable synchronized net { = {(o < (1 <--- < (1},
there exists a reduction of it consisting at most of 3 synchronized intervals with
the same level.
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Proof: Let n = {ny < m < --- < num} be a reduction of ¢ with the smallest
number of intervals M. If the levels of the synchronized intervals contained in it
are not the same, then there exists : = 0,1,..., M — 1 such that

(Misr = m)/ (0 — mi-1) = €(4/9)  with € € {1/4,4} and j # 0.

If j > 0, then by Lemma 9, [n;, n; + &(m — 7i—1)] is a synchronized interval
and either there exists n with i + 1 < n < M such that 5, = 5; + &(m; — 5i-1)
or 7; + £&(m; — mi—1) > nr. In the former case, we have a further reduction of
G {m<m<---<n <n, <--- < mny} with a number of intervals less than
M, contradicting the assumption on M. In the latter case, we have a futher
reduction of ¢, 7’ := {no < m < -+ < m < 1 + E(Mi — Mi—1)}, which has a
number of intervals at most M. By the assumption on M, it is exactly M and
i=M-1.

If j <0, then by Lemma 9, [ — £&(%i+1 — %), 7] is a synchronized interval
and either there exists n with 0 < n < ¢ — 1 such that 7, = 7 — £(1;41 — i)
or 1; — £(Mix1 — i) < Mo. In the former case, we have a further reduction of ¢,
{mo <m < -+ <np <m <--- < nuy} with a number of intervals less than
M, contradicting the assumption on M. In the latter case, we have a futher
reduction of ¢, #' := {n; — &(ni+1 —mi) <M < --- < nu}, which has a number of
intervals at most M. By the assumption on M, it is exactly M and 7 = 1.

If the levels of the synchronized intervals contained in %' are not the same,
we repeat the above procedure to get finally a futher reduction of ¢ such that it
has a number M of synchronized intervals with the same level. Hence, we may
assume that 7 = {ny < m < --- < nu} is a reduction of ¢ which has the smallest
number of intervals M with the same level.

Suppose that M > 4. Then, in the sequence of (1,41 — 7:)/(m — mi—1)
(¢=1,2,...,M — 1), there exists : = 1,2,..., M — 2 such that the combination
(s = m)/ (i — mi-1), (g2 — M)/ (Misr — ) Is either (1/4, 4), (1/4, 1/4)
or (4, 4). Then by Lemma 9, we find a further reduction of ¢ with a smaller
number of intervals, contradicting the assumption on M. Hence M < 3. 1

THEOREM 8: For any bounded closed interval J = [a,b] with a < b, there exists
measurable functionals T: C(J) — [0,00) and G: C(J) — © such that

(1) PriG(Yy)(t) = Npye — Np| t < 7(Yy) ] =1 for any t > 0, and

(2) Pr[r(Yy) < t] <9t/(4B) for any t > 0,
where C(J) is the space of continuous functions on J and we set B := (b—a)/21.

Proof: By Theorem 6, there exists a Yj-measurable synchronized net covering



Vol. 125, 2001 DETERMINISTIC BROWNIAN MOTION 345

la,b]. Taking its reduction obtained in Theorem 7, we get a Y -measurable
synchronized net n:= {no < m < --- < nu} satisfying
(i) M <3,
(ii) the synchronized intervals in 1 have the same level, and
(ii)) no € a < b < npg.
Define 7 = 7(Y;) ;== ny — b and
0, t <0,
G(YJ)(t) = { Npy: —Np, 0<t< T,
Nppr = Np, t>7.
Then (1) is clear from the definitions of 7 and G together with (3) of Theorem 6.
Let b € [n:, m41])- Then

Mivr — M > (g ~ o)/ (L +4+4%) > (b—a)/21=B.

Let [u,v] be the minimal synchronized interval containing b with v — u > B.
Since [u,v] C [, Ni+1], wehave 7/ :=v —b<miy1 ~b<ny —-b=r.

Take t > 0 with ¢t < (4/9)B and let n = [B/t]. If 7’'(w) € [0,¢), then 7' (w—jt) €
[7¢, (F + 1)t) for any 7 = 0,1,...,n — 1. Hence, for any j = 0,1,...,n— 1, we
have

Pr(r'(w) € [0,8)) < Pr{r'(w — jt) € [4t, (j + 1)1)) = Pr(r'(w) € [52, ( + 1)),

where we used the fact that the probability measure P is invariant under the
addition. Therefore, we have Pr(7’ < t) < 1/n, since
n—1
nPr(r’ € [0,1)) <> P(r' € [jt,(j + t)) < Pr(r' € [0, B)) < 1.
=0
Thus we have (2), since Pr(r < t) < Pr(r’ < t) < 1/n < 9t/(4B) for any
t < 4B/9. For t > 4B/9, (2) holds trivially since 9¢/(4B) > 1. 1

We construct a predictor for Y, with ¢ > b based on the observation Y,
where J = [a,b]. We use G(Y;)(c) to estimate N, — Nj. By Theorem 8, if
¢ — b < 7(Yy), then the estimation is exact. To estimate Y, = H(N,, c), we use
the Taylor expansion at (Np, ) with G(Y;)(c) for N, — Ny;:

. = Yo + HolNo, DG(Y5)(€) + 5 Hea (N, BYG(¥) ()2 + Ho(Np, B)(c ~ ).

Note that ¥, is a measurable function of the observation Yj by Theorem 6.
The value can be calculated based on the observation without using any further
information on the unknown function H than (H1) and (H2).
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THEOREM 9: We have

(Y. - Y] = of(e - i) + 0 C=2L)

as ¢ | b with C(b) in (2) in Section 1 as the constant in O( ).

Proof: Since
Ye =Yy + Hy(Np, b)G(Yr)(c)
1
+ 5 Hoo (N5, ))G(Y5) (¢)* + Hy (N5, b) (c — b) + ofc - ),

Y. — Y, = o(c — b) holds if ¢ — b < 7(¥;). If otherwise, ¥, — Y, = O((c — b)!/?)
since [G(¥7)(0)] < (¢~ 8)"/2, [N~ Ny| < (¢~ b)"/2 and

IG(Y1)(c) = (Ne = Np)| = |[Np(y,) — No| < (¢ = b)Y/,

so that

(Yc -Y.)?< (1+494) sup |Hy(z, b)lz(c -b)
jz|<|bl2/2

for any 6 > 0 as ¢ — b. Since by Theorem 8, Pr{r(Y;) < ¢—b] < 48(c—b)/(b—a),
we have
E[(V, — Y.)?] =E[(Y, - Y,)? |7(Yy) > ¢ — b] Pr{r(Ys) > c—b]
+E[(Y. - Yo)? |7(Yy) < c—b] Pr[r(Ys) <c—b]
(c—b)?
<o(e — b)2 + O(Ta_)

with C(b) in (2) as the constant in O( ). |
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