STOCHASTIC ANALYSIS BASED ON DETERMINISTIC BROWNIAN MOTION

BY

TETURO KAMAE

Department of Mathematics, Osaka City University 558-8585 Osaka, Japan e-mail: kamae@sci.osaka-cu.ac.jp

ABSTRACT

A deterministic version of the Itô calculus is presented. We consider a model $Y_t = H(\mathbf{N}_t, t)$ with a deterministic Brownian \mathbf{N}_t and an unknown function H. We predict Y_c from the observation $\{Y_t; t \in [a, b]\}$, where a < b < c. We prove that there exists an estimator Y_t based on the observation such that $E[(\hat{Y}_t - Y_c)^2] = O((c-b)^2)$ as $c \downarrow b$.

1. Introduction

Deterministic Brownian motions are stochastic processes with noncorrelated, stationary and strictly ergodic increments having 0-entropy and 0-expectation. The self-similarity of order 1/2 follows from these properties. Such processes have a lot of variety and have different properties. This is not the case of the Brownian motion where the process is characterized as a process with stationary and independent increments with 0-expectation and standard variance.

Among the deterministic Brownian motions, the simplest one is the N-process $(\mathbf{N}_t; t \in \mathbf{R})$ which is defined by the author in Example 8 of [K]. It comes from a piecewise linear function called the N_1 -function (in Figure 1). It is time reversible.

The aim of this paper is to develop stochastic analysis based on the N-process. We consider a process $Y_t = H(\mathbf{N}_t, t)$, where the function H(x, s) is twice continuously differentiable in x and once continuously differentiable in s and $H_x(x, s) > 0$. The function H is considered completely unknown except for these properties.

Received February 7, 2000

We want to predict the value Y_c from the observation $Y_J := \{Y_t; t \in J\}$, where J = [a, b] and a < b < c. We prove in Theorem 9 that there exists an estimator \hat{Y}_c such that

(1)
$$\operatorname{E}[(\hat{Y}_c - Y_c)^2] = o((c-b)^2) + O\left(\frac{(c-b)^2}{b-a}\right)$$

as $c \downarrow b$ with the following C(b) as the constant in O():

(2)
$$C(b) := 50 \sup_{|x| \le |b|^{1/2}} |H_x(x,b)|^2.$$

One of the motivations of our paper is given by Benoit B. Mandelbrot [2], who mentioned that the simulation of the stock market by the Brownian motion contains too much randomness. An actual market has a strong negative correlation between the fluctuations of price on a day and the next day. He suggests using the N-shaped function as the base of the simulation.

Our model has a lot of similarities to the Itô process. For example, we have an Itô formula (Theorem 4). Nevertheless, there is a big difference between them. Our process has 0-entropy while the Itô process has ∞ -entropy. Therefore, we have a much better possibility of predicting the future. Theoretically, if we have complete information about the function H, and complete data of Y_t in the past, we should be able to predict the future without error. But the actual setting is with the unknown function H and the limited observation Y_t for a bounded interval J. The best we can do is order $O((c-b)^2)$ in the above estimate (1), and O(c-b) in the case of an Itô process.

A sample path from an N-process repeats the N_1 -function in various scales. The main idea for the prediction, called **synchronization**, is to find out the positions and the scales of the appearances of N_1 -function in the sample path. An appearance of the N_1 -function in a sample path is a part of bigger N_1 -functions while containing smaller ones. Along the 3 line segments in an appearance of the N_1 -function, the sample path either increases at the first part, then decreases and increases, or decreases at the first part, then increases and decreases. Thus, it has a strong correlation along the synchronized intervals, while the process itself has noncorrelated increments.

Another motivation is to create a sample path of Brownian motion in a deterministic way without using a random mechanism. Our N-process is strictly ergodic so that any chosen path realizes probablistic properties of the process. We don't need a randomization procedure but just take one, for example, the N_{∞} -function itself. Of course, it is not exactly like a path of the Brownian motion, but shares the quadratic structure with Brownian motion. If we take a derivative in some sense of the sample path, we get a white noise. Thus, our N-process provides a method of generating a random number.

2. N-process

We consider the **N-process** (\mathbf{N}_t ; $t \in \mathbf{R}$), which is the stochastic process defined in Example 8 of [1] for $\alpha = 1/2$. We repeat the definition in a slightly different way as follows.

Define a continuous piecewise linear function N_1 (see Figure 1) on the interval [0, 1] by

$$N_1(x) = egin{cases} rac{3}{2}x, & 0 \leq x \leq 4/9, \ -3x+2, & 4/9 \leq x \leq 5/9, \ rac{3}{2}x - rac{1}{2}, & 5/9 \leq x \leq 1. \end{cases}$$

Let N_2 be the continuous piecewise linear function on [0,1] obtained by replacing 3 line segments in N_1 by self-affine images of N_1 or $-N_1$ keeping the 2 end points fixed, that is,

$$N_2(x) = \begin{cases} \frac{2}{3}N_1(\frac{9}{4}x), & 0 \le x \le 4/9, \\ \frac{3}{3} - \frac{1}{3}N_1(9x - 4), & 4/9 \le x \le 5/9, \\ \frac{1}{3} + \frac{2}{3}N_1(\frac{9}{4}x - \frac{5}{4}), & 5/9 \le x \le 1. \end{cases}$$

Let N_3 be the continuous piecewise linear function on [0,1] obtained by replacing 9 line segments in N_2 by self-affine images of N_1 or $-N_1$ as before. In the same way, we obtain N_n from N_{n-1} for $n = 4, 5, \ldots$ For covenience, we define N_0 by $N_0(t) = t$ for any $t \in [0, 1]$.

We prove that the function N_n converges pointwise as n tends to infinity to a continuous function, say N_{∞} on [0,1]. Let $a, b \in [0,1]$ with a < b. The interval [a, b] is called a synchronized interval of level n if $(a, N_n(a))(b, N_n(b))$ is one of the 3^n line segments consisting of the graph of the function N_n for n = 0, 1, 2, ...In this case, we have for any $m \ge n$ that

1. $N_m(a) = N_n(a)$ and $N_m(b) = N_n(b)$,

2.
$$N_n(a) < N_m(t) < N_n(b)$$
 or $N_n(a) > N_m(t) > N_n(b)$ for any $t \in (a, b)$,

- 3. $|N_n(b) N_n(a)| = |b a|^{1/2}$, and 4. $b a = \left(\frac{4}{9}\right)^i \left(\frac{1}{9}\right)^{n-i}$ for some i = 0, 1, ..., n.

Take any $t \in [0, 1]$. For any $\varepsilon > 0$, there exists n and a synchronized interval of level n, say [a, b] with $t \in [a, b]$ and $|b - a| < \varepsilon^2$. Then for any $m, m' \ge n$,

$$|N_m(t) - N_{m'}(t)| \le |N_n(b) - N_n(a)| = |b - a|^{1/2} < \varepsilon$$

Thus, $N_m(t)$ converges as $m \to \infty$. The limit will be denoted by $N_{\infty}(t)$.

Let us prove the continuity of the function N_{∞} . Take any $s, t \in [0, 1]$ with $0 < t - s \leq (1/9)^n$ for some $n = 1, 2, \ldots$. Then there exists 2 neighboring synchronized intervals of level n, say [a, b] and [b, c] such that $[s, t] \subset [a, c]$. Then we have

$$\begin{aligned} |N_{\infty}(t) - N_{\infty}(s)| &\leq |N_{n}(b) - N_{n}(a)| + |N_{n}(c) - N_{n}(b)| \\ &= |b - a|^{1/2} + |c - b|^{1/2} \leq 2 \left(\frac{4}{9}\right)^{n/2} \end{aligned}$$

Thus, the function N_{∞} is continuous.

Figure 1. N_1 , N_2 , N_3 and N_{∞} .

We define a function $\tilde{N}_{\infty}: \mathbf{R} \to \mathbf{R}$ which is an extension of N_{∞} by

$$\tilde{N}_{\infty}(t) = \begin{cases} 0, & t < 0, \\ N_{\infty}(t), & 0 \le t \le 1, \\ 1 & t > 1. \end{cases}$$

Now we randomize \tilde{N}_{∞} to get the N-process $(\mathbf{N}_t; t \in \mathbf{R})$.

Let Θ be the set of continuous functions $\omega: \mathbf{R} \to \mathbf{R}$ with $\omega(0) = 0$. We consider Θ as a topological space with the compact open topology, that is, $\omega_n \in \Theta$ converges to $\omega \in \Theta$ as *n* tends to infinity if and only if $\omega_n(t)$ converges to $\omega(t)$ uniformly on each bounded set of *t*. For $\omega \in \Theta$ and $s \in \mathbf{R}$, we define the **addition** $\omega + s \in \Theta$ (see Figure 2) by

$$(\omega + s)(t) = \omega(s + t) - \omega(s).$$

Figure 2. ω , $\omega + s$ and $2(\omega + s)$.

For $\omega \in \Theta$ and $\lambda \in \mathbf{R}_+$, we define the **multiplication** $\lambda \omega \in \Theta$ by

$$(\lambda\omega)(t) = \lambda^{1/2}\omega(\lambda^{-1}t).$$

Choose $s \in [0, 1]$ randomly according to the Lebesgue measure on [0, 1] and define $\tilde{N}_{\infty} + s$. Now take L > 0 and choose $\lambda \in [0, L]$ randomly according to the normalized Lebesgue measure on [0, L] independently of s and define $e^{\lambda}(\tilde{N}_{\infty} + s)$.

Now let L tend to infinity. We prove in Theorem 1 that the distribution of the random variable $e^{\lambda}(\tilde{N}_{\infty} + s)$ on Θ converges weakly (i.e. in the weak* sense) as L tends to infinity. Let P be the limiting distribution on Θ . Then the stochastic process $(\mathbf{N}_t; t \in \mathbf{R})$ on the probability space (Θ, P) is defined by $\mathbf{N}_t(\omega) = \omega(t)$ for any $\omega \in \Theta$ and $t \in \mathbf{R}$, which is called the **N-process**. Let Θ_0 be the topological support of the measure P.

Let [a, b] be a synchronized interval of level *i*. We call it **increasing** if $N_{\infty}(a) < N_{\infty}(b)$ and **decreasing** if $N_{\infty}(a) > N_{\infty}(b)$. We call it **left, middle** or **right** if there exists a synchronized interval [u, v] such that [a, b] is equal to [u, u'], [u', v'] or [v', v], respectively, where we put u' = (5u + 4v)/9 and v' = (4u + 5v)/9. For example, [0, 1] is the only synchronized interval of level 0, which is increasing. There are 3 synchronized intervals of level 1, namely [0, 4/9], [4/9, 5/9], [5/9, 1], which are increasing, decreasing and increasing, respectively and left, middle and right, respectively.

Let $X = e^{\lambda}(\tilde{N}_{\infty} + s)$ for some $s \in [0, 1]$ and $\lambda \in [0, \infty)$. Note that

$$e^{\lambda} = (X(\infty) - X(-\infty))^2,$$

1 - s = e^{-\lambda} min{t; X(t) = X(\infty)},

so that λ and s are determined by X. Let [a, b] be a synchronized interval. Then we say that $[(a-s)e^{\lambda}, (b-s)e^{\lambda}]$ is a **synchronized interval of** X. We also say that it is increasing, decreasing, left, middle or right synchronized interval of X if [a, b] is so.

LEMMA 1: (1) $\tilde{N}_{\infty}(t) + \tilde{N}_{\infty}(1-t) = 1$ for any $t \in \mathbf{R}$.

(2) Let [a, b] be a synchronized interval. Then we have

$$N_\infty(t) - N_\infty(a) = \xi(b-a)^{1/2} N_\infty\Big(rac{t-a}{b-a}\Big)$$

for any $t \in [a, b]$, where ξ is 1 or -1 according as the interval [a, b] is increasing or decreasing, respectively.

(3) There exists a constant C such that

$$| ilde{N}_{\infty}(t) - ilde{N}_{\infty}(s)| \leq C |t-s|^{1/2}$$

for any $s, t \in \mathbf{R}$.

(4) The set $K := \{e^{\lambda}(\tilde{N}_{\infty} + s); s \in [0, 1], \lambda > 0\}$ is relatively compact in Θ .

Remark 1: In Theorem 2, we prove that C in (3) of Lemma 1 can be taken as 1.

Proof: (1) Clear from the definitions of N_{∞} and N_{∞} .

(2) The graph of N_{∞} restricted to the interval [a, b] is the image of the graph of N_{∞} by the affine transformation sending the point (0,0) to $(a, N_{\infty}(a))$, (0,1) to $(a, N_{\infty}(b))$, (1,0) to $(b, N_{\infty}(a))$, and (1,1) to $(b, N_{\infty}(b))$. Moreover, we already remarked that $N_{\infty}(b) - N_{\infty}(a) = \xi(b-a)^{1/2}$. Our conclusion follows from these properties.

(3) Assume without loss of generality that $0 \le s < t \le 1$ and t-s < 1/2, since otherwise, either the required inequality holds with C = 2 or it follows from our case by the symmetry or with $s \lor 0$ for s and $t \land 1$ for t. Take the maximum nsuch that there exist either 2 neighboring synchronized intervals [a, b] and [b, c]of level n with $[s, t] \subset [a, c]$. Then we have $t - s > (1/9)((b-a) \land (c-b))$, since otherwise, we can take a larger n than this. It follows that

$$\begin{split} |\tilde{N}_{\infty}(t) - \tilde{N}_{\infty}(s)| &= |N_{\infty}(t) - N_{\infty}(s)| \\ &\leq |N_{\infty}(b) - N_{\infty}(a)| + |N_{\infty}(c) - N_{\infty}(b)| \\ &= |b - a|^{1/2} + |c - b|^{1/2} \\ &= 3((b - a) \wedge (c - b))^{1/2} \\ &< 9|t - s|^{1/2}, \end{split}$$

where we used the fact that either c - b = 4(b - a) or c - b = (1/4)(b - a) holds, since [a, b] and [c, d] are neighboring synchronized intervals of the same level (see (2) of Lemma 2).

(4) By (3), any function f in K satisfies $|f(t) - f(s)| \le C|t - s|^{1/2}$ for any $s, t \in \mathbf{R}$ together with f(0) = 0. This implies that K is relatively compact in Θ .

THEOREM 1: The N-process introduced above is well defined and has the same distribution as the cocycle F for $\alpha = 1/2$ in Example 8 in [1].

Proof: In Example 6 of [1], the weighted substitution (φ, η) on $\{0, 1\}$ was defined as

$$\begin{aligned} 0 &\to \left(0, \frac{4}{9}\right) \left(1, \frac{1}{9}\right) \left(0, \frac{4}{9}\right), \\ 1 &\to \left(1, \frac{4}{9}\right) \left(0, \frac{1}{9}\right) \left(1, \frac{4}{9}\right). \end{aligned}$$

Then we defined $\Omega := \Omega(\varphi, \eta)$, the set of colored tilings associated to (φ, η) which is strictly ergodic with respect to the addition (**R**-action). Let μ be the unique invariant measure on Ω with respect to the addition, which is also invariant under

the multiplication (\mathbf{R}_+ -action). Finally, we defined the 1/2-homogeneous cocycle F on Ω in Example 8 of [1]. Then

(3)
$$F(\omega,t) - F(\omega,c) = (-1)^{\sigma} (d-c)^{1/2} N_{\infty} \left(\frac{t-c}{d-c}\right)$$

for any $\omega \in \Omega$ and $t \in [c, d]$ if there exists a tile S of ω with color σ such that $S = (a, b] \times [c, d)$ for some a, b. For $\omega \in \Omega$, let $F(\omega)$ denote the function $\mathbf{R} \to \mathbf{R}$ such that $F(\omega)(t) = F(\omega, t)$. Then, $F(\omega) \in \Theta$. Let μ_F be the distribution of the random variable $F(\omega)$ with values in Θ defined on the probability space (Ω, μ) .

We want to prove that the process $(\mathbf{N}_t; t \in \mathbf{R})$ is well defined and has the distribution μ_F . For this purpose, we prove that the distribution of the random variable $X_L := e^{\lambda}(\tilde{N}_{\infty} + s)$ converges in the weak sense to μ_F as $L \to \infty$, where (s, λ) is a uniformly distributed random variable on $[0, 1] \times [0, L]$. It is sufficient to prove that for any sequence $\{L_n; n = 1, 2, \ldots\}$ with $\lim_{n\to\infty} L_n = \infty$, there exists a subsequence $\{L'_n\}$ of $\{L_n\}$ with $\lim_{n\to\infty} L'_n = \infty$ such that the distribution of $X_{L'_n}$ converges to μ_F weakly as n tends to infinity.

Take any sequence $\{L_n; n = 1, 2, ...\}$ with $\lim_{n\to\infty} L_n = \infty$. There exists a subsequence $\{L'_n\}$ of $\{L_n\}$ with $\lim_{n\to\infty} L'_n = \infty$ such that the distribution of $X_{L'_n}$ converges weakly to, say, P', as n tends to infinity by (4) of Lemma 1. We want to prove that $P' = \mu_F$.

Since Ω is strictly ergodic with respect to the addition ([1]) and the transformation $F: \Omega \to \Theta$ is continuous satisfying $F(\omega + t) = F(\omega) + t$ ($\forall \omega \in \Omega, \forall t \in \mathbf{R}$), $F(\Omega)$ is strictly ergodic with respect to the addition. Hence it is sufficient to prove that

(i) P' is invariant under the addition, and

(ii) $P'(F(\Omega)) = 1$.

Let **L** be any bounded continuous functional on Θ . Take any $t \in \mathbf{R}$ and $\eta \in \mathbf{R}_+$. Then we have

$$\int \mathbf{L}(\omega+t)dP'(\omega) = \lim_{n \to \infty} \frac{1}{L'_n} \int_0^{L'_n} \int_0^1 \mathbf{L}(e^{\lambda}(\tilde{N}_{\infty}+s)+t))dsd\lambda$$
$$= \lim_{n \to \infty} \frac{1}{L'_n} \int_0^{L'_n} \int_{te^{-\lambda}}^{1+te^{-\lambda}} \mathbf{L}(e^{\lambda}(\tilde{N}_{\infty}+s))dsd\lambda$$
$$= \int \mathbf{L}(\omega)dP'(\omega),$$

which proves (i).

Since $F(\Omega)$ is compact ([1]), to prove (ii) it is sufficient to prove that $P'(F(\Omega)_M) = 1$ for any M > 0, where $F(\Omega)_M$ is the set of $f \in \Theta$ such that there exists $\omega \in \Omega$ satisfying that the restrictions of f and $F(\omega)$ to [-M, M] coincide.

Let $[a_L, b_L]$ be the minimal synchronized interval of X_L , if it exists, containing [-M, M] and let $c_L = 0$ or 1 corresponding to whether $[a_L, b_L]$ is increasing or decreasing. Such an interval $[a_L, b_L]$ exists if and only if

$$(4) \qquad \qquad [-M,M] \subset [-se^{\lambda},(1-s)e^{\lambda}],$$

since $[-se^{\lambda}, (1-s)e^{\lambda}]$ is the unique synchronized interval of X of level 0. In this case, take $\omega \in \Omega$ such that there exists a tile S of ω with color c_L and $S = (a, b] \times [a_L, b_L)$ for some a, b. Then by Lemma 1 and (3), we have

$$F(\omega, t) - F(\omega, a_L) = X_L(t) - X_L(a_L)$$

for any $t \in [-M, M] \subset [a_L, b_L]$. Since $F(\omega, 0) = X_L(0) = 0$, we have $F(\omega, a_L) = X_L(a_L)$ by putting t = 0 in the above equality. Hence, we have $F(\omega, t) = X_L(t)$ for any $t \in [-M, M]$. Thus,

$$(5) X_L \in F(\Omega)_M$$

if (4) holds.

(6)

Let us estimate the probability that (4) holds.

$$\begin{aligned} \Pr([-M,M] \subset [-se^{\lambda},(1-s)e^{\lambda}]) &= \Pr((s \wedge (1-s))e^{\lambda} \ge M) \\ &= \frac{1}{L} \int_{0}^{L} \int_{0}^{1} \mathbb{1}_{(s \wedge (1-s))e^{\lambda} \ge M} ds d\lambda \\ &\geq \frac{1}{L} \int_{0}^{L} (1-2Me^{-\lambda}) d\lambda \\ &\geq 1 - \frac{2M}{L}, \end{aligned}$$

which tends to 1 as L tends to infinity.

Since $F(\Omega)_M$ is a closed set we have, by (5) and (6),

$$P'(F(\Omega)_M) \ge \lim_{n \to \infty} \Pr(X_{L'_n} \in F(\Omega)_M) = 1,$$

which proves (ii).

COROLLARY 1: The following statements hold.

(1) $\Theta_0 = F(\Omega)$, where Θ_0 is the topological support of the measure P.

(2) For any $\theta \in \Theta_0$ and $a, b \in \mathbf{R}$ with a < b, there exist $s \in [0, 1]$ and $\lambda \in [0, \infty)$ such that the restriction of θ to the interval [a, b] coincides with the restriction of $e^{\lambda}(\tilde{N}_{\infty} + s)$ to [a, b]. Moreover, in this case, $[a, b] \subset [-se^{\lambda}, (1-s)e^{\lambda}]$ holds. COROLLARY 2 ([1]): The space Θ_0 is compact and invariant under the addition and multiplication. The addition on Θ_0 is strictly ergodic with the unique invariant probability Borel measure P. Moreover, P is invariant under the multiplication. The entropy of the addition is 0. The stochastic process $(\mathbf{N}_t; t \in \mathbf{R})$ is self-similar with order 1/2 and has stationary, strictly ergodic and noncorrelated increments with 0 entropy. Moreover, $\mathbf{E}[\mathbf{N}_t] = 0$ and $\mathbf{V}[\mathbf{N}_t] = C|t|$ for any $t \in \mathbf{R}$, where C > 0 is a constant. Furthermore, the process $(\mathbf{N}_t; t \in \mathbf{R})$ is time reversible.

Remark 2: We do not know the exact value of C in Corollary 2. A numerical computation tells us that $C = 0.1243 \cdots$.

3. Synchronization

LEMMA 2: (1) For any synchronized intervals I and J, either $I \subset J$, $I \supset J$ or $I^i \cap J^i = \emptyset$ holds, where I^i and J^i are the sets of interior points of I and J, respectively.

(2) For any neighboring synchronized intervals [a, b] and [b, c], either $(c-b)/(b-a) = (1/4)(4/9)^i$ for some integer *i*, or $(c-b)/(b-a) = 4(4/9)^i$ for some integer *i*, where *i* is the level of [b, c] relative to [a, b]. Moreover, one of them is increasing and the other decreasing.

Proof: (1) Clear from our construction of the function N_{∞} .

(2) Let [u, v] be the minimal synchronized interval containing $[a, b] \cup [b, c]$ and let [u, u'], [u', v'], [v', v] be the synchronized intervals of the next level, where u' = (5u + 4v)/9, v' = (4u + 5v)/9. Then, there are 2 cases:

CASE 1: $[a, b] \subset [u, u']$ and $[b, c] \subset [u', v']$. In this case, we have $b - a = (4/9)^{h}(4/9)(v - u)$ and $c - b = (4/9)^{k}(1/9)(v - u)$, so that $(c - b)/(b - a) = (1/4)(4/9)^{i}$ with i := k - h, which is the level of [b, c]relative to [a, b].

CASE 2: $[a, b] \subset [u', v']$ and $[b, c] \subset [v', v]$. In this case, we have $b - a = (4/9)^{h}(1/9)(v - u)$ and $c - b = (4/9)^{k}(4/9)(v - u)$, so that $(c-b)/(b-a) = 4(4/9)^{i}$ with i := k - h, which is the level of [b, c] relative to [a, b].

LEMMA 3: For any increasing (decreasing) synchronized interval [a, b], we have $N_{\infty}(a) < N_{\infty}(t) < N_{\infty}(b)$ ($N_{\infty}(a) > N_{\infty}(t) > N_{\infty}(b)$, respectively) for any $t \in (a, b)$. In particular, $0 \leq \tilde{N}_{\infty}(t) \leq 1$ for any $t \in \mathbf{R}$.

Proof: Let [a, b] be an increasing synchronized interval of level n. Then, we remarked in Section 2 that $N_n(a) < N_m(t) < N_n(b)$ or $N_n(a) > N_m(t) > N_n(b)$ for any $t \in (a, b)$ and $m \ge n$. Since $N_n(a) = N_{\infty}(a) < N_{\infty}(b) = N_n(b)$, we have $N_{\infty}(a) < N_m(t) < N_{\infty}(b)$ for any $t \in (a, b)$ and $m \ge n$. Take any $t \in (a, b)$. There exists $m \ge n$ and a synchronized interval [c, d] of level m such that $a < c \le t \le d < b$. Then,

$$N_\infty(a) < N_\infty(c) = N_m(c) \le N_M(t) \le N_m(d) = N_\infty(d) < N_\infty(a)$$

for any $M \geq m$. Letting $M \to \infty$, we have

$$N_{\infty}(a) < N_{\infty}(t) < N_{\infty}(a).$$

LEMMA 4: (1) For any $0 < t \le 1$, we have $N_{\infty}(t) \le t^{1/2}$. The equality holds if and only if [0, t] is a synchronized interval.

(2) For any $0 \le t < 1$, $1 - N_{\infty}(t) \le (1 - t)^{1/2}$. The equality holds if and only if [t, 1] is a synchronized interval.

Proof: (1) If $t \in (4/9, 5/9]$, then by Lemma 3,

$$N_{\infty}(t)/t^{1/2} < N_{\infty}(4/9)/(4/9)^{1/2} = 1.$$

Let

$$a = \frac{5}{9} + \left(\frac{4}{9}\right)^3 = \frac{469}{729}, \quad b = \frac{5}{9} + \left(\frac{4}{9}\right)^2 \frac{5}{9} = \frac{485}{729},$$
$$c = \frac{5}{9} + \left(\frac{4}{9}\right)^2 = \frac{61}{81}, \quad d = 1 - \left(\frac{4}{9}\right)^2 = \frac{65}{81}.$$

Then we have

$$N_{\infty}(a) = \frac{1}{3} + \left(\frac{2}{3}\right)^3 = \frac{17}{27} = \max_{5/9 \le t \le b} N_{\infty}(t),$$
$$N_{\infty}(c) = \frac{1}{3} + \left(\frac{2}{3}\right)^2 = \frac{7}{9} = \max_{b \le t \le d} N_{\infty}(t).$$

Hence,

$$N_{\infty}(t)/t^{1/2} < N_{\infty}(a)/(5/9)^{1/2} = rac{17/27}{(5/9)^{1/2}} < 1$$

for any $t \in (5/9, b]$, and

$$N_{\infty}(t)/t^{1/2} < N_{\infty}(c)/b^{1/2} = \frac{7/9}{(485/729)^{1/2}} < 1$$

for any $t \in (b, d]$. If $t \in (d, 1)$, then there exists $k = 2, 3, \ldots$ such that $1 - (4/9)^k < t \le 1 - (4/9)^{k+1}$, and

$$N_{\infty}(t)/t^{1/2} < N_{\infty}(1 - (5/9)(4/9)^k)/(1 - (4/9)^k)^{1/2} = \frac{1 - \frac{1}{3}(\frac{2}{3})^k}{(1 - (4/9)^k)^{1/2}} < 1.$$

Therefore, $N_{\infty}(t)/t^{1/2} \ge 1$ holds only if t = 1 or $t \in (0, 4/9]$. For $t \in (0, 4/9]$, let $k = 1, 2, \ldots$ be such that $(4/9)^{k+1} < t \le (4/9)^k$. Then, since $[0, (4/9)^k]$ is a synchronized interval, we have by Lemma 1 that

$$N_{\infty}(t)/t^{1/2} = N_{\infty}((9/4)^k t)/((9/4)^k t)^{1/2}.$$

Since $(9/4)^k t \in (4/9, 1]$, $N_{\infty}(t)/t^{1/2} \ge 1$ if and only if $(9/4)^k t = 1$. That is, $t = (4/9)^k$. This is equivalent to saying that [0, t] is a synchronized interval. Moreover, since the value of $N_{\infty}(t)/t^{1/2}$ at such t is 1, we complete the proof of (1).

(2) follows from (1) by (1) of Lemma 1. \blacksquare

LEMMA 5: For any $a, b \in \mathbf{R}$ with a < b, $|\tilde{N}_{\infty}(b) - \tilde{N}_{\infty}(a)| \leq (b-a)^{1/2}$. The equality holds if and only if [a, b] is a synchronized interval.

Proof: If a < b < 0 or 1 < a < b, then $|\tilde{N}_{\infty}(b) - \tilde{N}_{\infty}(a)| = 0 < (b-a)^{1/2}$. If a < 0 < 1 < b, then $|\tilde{N}_{\infty}(b) - \tilde{N}_{\infty}(a)| = 1 < (b-a)^{1/2}$. If $a < 0 \le b \le 1$, then $|\tilde{N}_{\infty}(b) - \tilde{N}_{\infty}(a)| = \tilde{N}_{\infty}(b) \le b^{1/2} < (b-a)^{1/2}$ by Lemma 4. If $0 \le a \le 1 < b$, then $|\tilde{N}_{\infty}(b) - \tilde{N}_{\infty}(a)| = 1 - \tilde{N}_{\infty}(a) \le (1-a)^{1/2} < (b-a)^{1/2}$ by Lemma 4.

Finally, assume that $0 \le a < b \le 1$ and $\tilde{N}_{\infty}(a) = N_{\infty}(a)$, $\tilde{N}_{\infty}(b) = N_{\infty}(b)$. Let [c, d] be the minimal synchronized interval containing [a, b]. We assume without loss of generality that the interval [c, d] is increasing. Let c' = (5c+4d)/9 and d' = (4c + 5d)/9. Then, the intervals [c, c'], [c', d'], [d', d] are synchronized. By the assumption, [a, b] is not contained in any of these intervals. Hence, there are 3 cases:

Case 1: $a < c' < b \le d'$,

CASE 2: $c' \leq a < d' < b$, and

Case 3: a < c' < d' < b.

In Case 1, by Lemmas 1, 3 and 4, we have

$$\begin{split} |N_{\infty}(b) - N_{\infty}(a)| &\leq (N_{\infty}(c') - N_{\infty}(a)) \lor (N_{\infty}(c') - N_{\infty}(b)) \\ &= (c'-c)^{1/2} N_{\infty} \left(\frac{c'-a}{c'-c}\right) \lor (d'-c')^{1/2} N_{\infty} \left(\frac{b-c'}{d'-c'}\right) \\ &\leq (c'-c)^{1/2} \left(\frac{c'-a}{c'-c}\right)^{1/2} \lor (d'-c')^{1/2} \left(\frac{b-c'}{d'-c'}\right)^{1/2} \\ &= (c'-a)^{1/2} \lor (b-c')^{1/2} \\ &< (b-a)^{1/2}. \end{split}$$

In Case 2, by Lemmas 1, 3 and 4, we have

$$\begin{split} |N_{\infty}(b) - N_{\infty}(a)| &\leq (N_{\infty}(a) - N_{\infty}(d')) \lor (N_{\infty}(b) - N_{\infty}(d')) \\ &= (d' - c')^{1/2} N_{\infty} \left(\frac{d' - a}{d' - c'}\right) \lor (d - d')^{1/2} N_{\infty} \left(\frac{b - d'}{d - d'}\right) \\ &\leq (d' - c')^{1/2} \left(\frac{d' - a}{d' - c'}\right)^{1/2} \lor (d - d')^{1/2} \left(\frac{b - d'}{d - d'}\right)^{1/2} \\ &= (d' - a)^{1/2} \lor (b - d')^{1/2} \\ &< (b - a)^{1/2}. \end{split}$$

Let us consider Case 3. Let $A := N_{\infty}(c') - N_{\infty}(a)$ and $B := N_{\infty}(b) - N_{\infty}(d')$. Then we have A > 0 and B > 0 by Lemma 3. By Lemmas 1 and 4, we have $A^2 \le c' - a$ and $B^2 \le b - d'$. Moreover, $N_{\infty}(d') - N_{\infty}(c') = -(d' - c')^{1/2}$. Hence,

$$(N_{\infty}(b) - N_{\infty}(a))^{2} = (A + B - (d' - c')^{1/2})^{2}$$

= $A^{2} + B^{2} + (d' - c') + 2AB - 2(A + B)(d' - c')^{1/2}$
(7) $\leq b - a + 2AB - 2(A + B)(d' - c')^{1/2}.$

Since $A \leq (c'-c)^{1/2} = 2(d'-c')^{1/2}$ and $B \leq (d-d')^{1/2} = 2(d'-c')^{1/2}$, we have

$$2AB - 2(A+B)(d'-c')^{1/2}$$

$$\leq 2(d'-c')^{1/2} \cdot B + A \cdot 2(d'-c')^{1/2} - 2(A+B)(d'-c')^{1/2} = 0$$

with equality only if $A = (c'-c)^{1/2}$ and $B = (d-d')^{1/2}$. Therefore by (7), we have $|N_{\infty}(b) - N_{\infty}(a)| \leq (b-a)^{1/2}$ with equality only if a = c and b = d and the interval [a, b] is synchronized.

LEMMA 6: Let $s \in [0, 1]$ and $\lambda \in [0, \infty)$ be arbitrary and let $X := e^{\lambda}(\tilde{N}_{\infty} + s)$. (1) For any interval [a, b] (a < b), we have $|X(b) - X(a)| \le (b - a)^{1/2}$. (2) The following statements for an interval [a, b] (a < b) are equivalent to each other.

(i) [a, b] is a synchronized interval of X.

(ii) $X(a) \neq X(b)$ and

$$X(t) - X(a) = \xi(b-a)^{1/2} \tilde{N}_{\infty} \left(\frac{t-a}{b-a}\right)$$

for any $t \in [a, b]$, where we set $\xi := \text{sgn}(X(b) - X(a))$. (iii) $|X(b) - X(a)| = (b - a)^{1/2}$.

Proof: (1) follows from Lemma 5.

(2) It is clear that (ii) implies (iii). That (i) implies (ii) follows from Lemma 1. That (iii) implies (i) follows from Lemma 5.

Let $\omega = (\mathbf{N}_t(\omega); t \in \mathbf{R})$ be an arbitrary sample path of the N-process belonging to Θ_0 . Then by Corollary 1 its restriction to any bounded set is a restriction to the same set of some of X in Lemma 6. An interval [a, b] (a < b) is called a **synchronized interval** of ω if it is a synchronized interval of a function X as in Lemma 6 which coincides with ω on [a - 4(b - a), b + 4(b - a)]. This is well defined since it is independent of the choice of X by Lemma 6. It is called **increasing**, **decreasing**, **left**, **middle** or **right** if it is so in X as above. We cannot count the level of a synchronized interval of ω , but we can compare the levels between synchronized intervals. For two synchronized intervals I and J of ω , J is said to have **level** n $(n \in \mathbf{Z})$ **relative** to I if there exists X as in Lemma 6 which coincides with ω on an interval containing $I \cup J$ and $m \ge 0$ such that I and J are synchronized intervals of X with levels m and m + n, respectively. In particular, they are said to have the **same level** if n = 0 in the above. If two synchronized intervals I and J of ω satisfy $I \subset J$ and I has level n relative to J, we say that J is the n-th **ancester** of I.

THEOREM 2: For any $\omega \in \Theta_0$ and an interval [a, b] (a < b), $|\omega(b) - \omega(a)| \le (b-a)^{1/2}$ with equality if and only if [a, b] is a synchronized interval of ω . If [a, b] is a synchronized interval of ω , then

$$\omega(t) - \omega(a) = \xi(b-a)^{1/2} N_{\infty}\left(\frac{t-a}{b-a}\right)$$

for any $t \in [a, b]$, where we set $\xi := \operatorname{sgn}(\omega(b) - \omega(a))$.

Proof: Clear from Lemma 6.

LEMMA 7: For any t with $0 < t \le 1$, $N_{\infty}(t) \ge (1/3)t^{1/2}$.

Proof: Take k = 0, 1, 2, ... such that $(4/9)^{k+1} < t \le (4/9)^k$. The minimum value of $N_{\infty}(s)$ for $(4/9)^{k+1} < s \le (4/9)^k$ is $(1/3)(2/3)^k$, attained when $s = (5/9)(4/9)^k$. Therefore, we have

$$N_{\infty}(t) \ge (1/3) \left(\frac{2}{3}\right)^k = (1/3) \left(\frac{4}{9}\right)^{k/2} \ge (1/3) t^{1/2}.$$

For any $\omega \in \Theta_0$ and $\varepsilon > 0$, a closed interval I is called a $(1-\varepsilon)$ -synchronized interval of ω if there exists a synchronized interval J of ω with $|I \cap J|/|I \cup J| \ge 1-\varepsilon$.

THEOREM 3: Let $\omega \in \Theta_0$. Then the following statements hold.

(1) For any $\varepsilon > 0$, there exists $\delta > 0$ such that for any interval [a, b] (a < b), if $|\omega(b) - \omega(a)| > (1 - \delta)(b - a)^{1/2}$, then [a, b] is an $(1 - \varepsilon)$ -synchronized interval of ω . In fact, for $\varepsilon < 1/10$, we can take $\delta = \varepsilon/18$.

(2) For any $\delta > 0$, there exists $\varepsilon > 0$ such that for any interval [a, b] (a < b), if [a, b] is an $(1-\varepsilon)$ -synchronized interval of ω , then $|\omega(b) - \omega(a)| > (1-\delta)(b-a)^{1/2}$. In fact, for $\delta < 1$, we can take $\varepsilon = (\delta/4)^2$.

(3) If I = [u, v] is a $(1 - \varepsilon)$ -synchronized interval of ω with $0 < \varepsilon < 1/10$, then there exists a unique solution in u' and v' of the equation:

(8)
$$u', v' \in [u - (1/7)(v - u), v + (1/7)(v - u)],$$

 $\omega(u') = \min\{\omega(t); t \in [u - (1/7)(v - u), v + (1/7)(v - u)]\},$
 $\omega(v') = \max\{\omega(t); t \in [u - (1/7)(v - u), v + (1/7)(v - u)]\}.$

Let this solution be u', v'. Then the interval J defined as J = [u', v'] if u' < v' and J = [v', u'] if v' < u' is a synchronized interval of ω such that $|I \cap J|/|I \cup J| \ge 1-\varepsilon$.

Proof: (1) Take any ε with $0 < \varepsilon < 1/20$. Assume that [a, b] is not a $(1 - 2\varepsilon)$ -synchronized interval of ω . Let [c, d] be a minimal synchronized interval of ω containing $[a + \varepsilon(b - a), b - \varepsilon(b - a)]$. We assume without loss of generality that [c, d] is increasing. Let c' = (5c + 4d)/9 and d' = (4c + 5d)/9. Then, by the minimality of [c, d] and the assumption that [a, b] is not $(1 - 2\varepsilon)$ -synchronized, we have 6 cases.

CASE 1: $c - \varepsilon(b - a) \le a \le c + \varepsilon(b - a)$ and $c' + \varepsilon(b - a) < b \le d'$. CASE 2: $c - \varepsilon(b - a) \le a \le c + \varepsilon(b - a)$ and $d' < b < d - \varepsilon(b - a)$.

CASE 3:
$$c + \varepsilon(b-a) < a < c' - \varepsilon(b-a)$$
 and $c' + \varepsilon(b-a) < b \le d'$.

 $\text{CASE 4:} \quad c + \varepsilon(b-a) < a < c' - \varepsilon(b-a) \text{ and } d' < b \leq d + \varepsilon(b-a).$

CASE 5:
$$c' - \varepsilon(b-a) \le a \le c' + \varepsilon(b-a)$$
 and $d' + \varepsilon(b-a) < b \le d + \varepsilon(b-a)$.

CASE 6: $c' + \varepsilon(b-a) < a < d' - \varepsilon(b-a)$ and $d' + \varepsilon(b-a) < b \le d + \varepsilon(b-a)$. In Case 1, by Theorem 2 and Lemma 7, we have

$$\begin{aligned} |\omega(b) - \omega(a)| &= (\omega(c') - \omega(a)) - (\omega(c') - \omega(b)) \\ &\leq (c'-a)^{1/2} - (d'-c')^{1/2} N_{\infty} \left(\frac{b-c'}{d'-c'}\right) \\ &\leq (c'-a)^{1/2} - (d'-c')^{1/2} (1/3) \left(\frac{b-c'}{d'-c'}\right)^{1/2} \\ &= (c'-a)^{1/2} - (1/3)(b-c')^{1/2} \\ &\leq (b-a)^{1/2} - (1/3)(\varepsilon(b-a))^{1/2} \\ &\leq (b-a)^{1/2} (1-(\varepsilon/9)^{1/2}). \end{aligned}$$

Hence, taking $\delta := (\varepsilon/9)^{1/2} > \varepsilon/9$ for 2ε , we have (1).

In Case 2, by Theorem 2 and Lemma 7, we have

$$\begin{split} (\omega(b) - \omega(a))^2 \\ &= (A + B - C)^2 \\ &\leq (c' - a) + (b - d') + (d' - c') + 2AB - 2AC - 2BC \\ &= b - a + 2AB - (A + B)(2/3)(d - c)^{1/2} \\ &\leq b - a + (2/3)(d - c)^{1/2}B + AB - (A + B)(2/3)(d - c)^{1/2} \\ &\leq b - a - A(\omega(d) - \omega(d') - B) \\ &= b - a - ((\omega(c') - \omega(c)) - (\omega(a) - \omega(c)))(\omega(d) - \omega(b)) \\ &\leq b - a - ((2/3)(d - c)^{1/2} - |a - c|^{1/2})(1/3)(d - b)^{1/2} \\ &\leq b - a - \left((2/3)((1 - 2\varepsilon)(b - a))^{1/2} - (\varepsilon(b - a))^{1/2} \right) (1/3)(\varepsilon(b - a))^{1/2} \\ &\leq b - a - (1/12)\varepsilon^{1/2}(b - a) \\ &\leq (1 - \varepsilon^{1/2}/12)(b - a), \end{split}$$

where we put $A := \omega(c') - \omega(a)$, $B := \omega(b) - \omega(d')$ and $C := \omega(c') - \omega(d')$. Hence, taking $\delta := \varepsilon^{1/2}/12 > \varepsilon/9$ for 2ε , we have (1). For Case 3, by Theorem 2 and Lemma 7, we have

$$\begin{aligned} (\omega(b) - \omega(a))^2 &= (A - B)^2 \\ &\leq (c' - a) + (b - c') - 2AB \\ &\leq b - a - 2(1/3)(c' - a)^{1/2}(1/3)(b - c')^{1/2} \\ &\leq b - a - 2((1/3)\varepsilon^{1/2}(b - a)^{1/2})^2 \\ &\leq (1 - (2\varepsilon/9))(b - a), \end{aligned}$$

where we put $A := \omega(c') - \omega(a)$ and $B := \omega(c') - \omega(b)$. Hence, taking $\delta := 2\varepsilon/9$ for 2ε , we have (1).

In Case 4, if $d' < b \le d' + \varepsilon(b-a)$, then there exists b' with $c' + \varepsilon(b-a) < b' < d'$ and $\omega(b') = \omega(b)$. Hence (1) follows from Case 3 since

$$egin{aligned} |\omega(b)-\omega(a)| =& |\omega(b')-\omega(a)| \ &\leq & (1-(2arepsilon/9))(b'-a) \ &\leq & (1-(2arepsilon/9))(b-a). \end{aligned}$$

Now assume that $d' + \varepsilon(b - a) < b \le d + \varepsilon(b - a)$. By Theorem 2 and Lemma 7, we have

$$\begin{aligned} (\omega(b) - \omega(a))^2 &= (A + B - C)^2 \\ &\leq (c' - a) + (b - d') + (d' - c') + 2AB - 2AC - 2BC \\ &= b - a + 2AB - (A + B)(2/3)(d - c)^{1/2} \\ &\leq b - a + A(2/3)(d - c)^{1/2} + AB - (A + B)(2/3)(d - c)^{1/2} \\ &\leq b - a - (\omega(c') - \omega(c) - A)B \\ &\leq b - a - (1/3)(a - c)^{1/2}(1/3)(b - d')^{1/2} \\ &\leq b - a - (1/9)\varepsilon(b - a) \\ &= (1 - (\varepsilon/9))(b - a), \end{aligned}$$

where we put $A := \omega(c') - \omega(a)$, $B := \omega(b) - \omega(d')$, and $C := \omega(c') - \omega(d')$. Hence taking $\delta := \varepsilon/9$ for 2ε , we have (1).

Case 5 and Case 6 follow from the previous cases by symmetry.

(2) Let $0 < \varepsilon < 1/10$ and let [a, b] be a $(1-\varepsilon)$ -synchronized interval. Then there exists a synchronized interval [c, d] with $|a - c| < 2\varepsilon(b - a)$ and $|b - d| < 2\varepsilon(b - a)$.

Then by Theorem 2, we have

$$\begin{split} |\omega(b) - \omega(a)| &\geq |\omega(d) - \omega(c)| - |\omega(a) - \omega(c)| - |\omega(b) - \omega(d)| \\ &\geq (d-c)^{1/2} - |a-c|^{1/2} - |b-d|^{1/2} \\ &\geq (b-a-\varepsilon(b-a))^{1/2} - 2(2\varepsilon(b-a))^{1/2} \\ &\geq (1-4\varepsilon^{1/2})(b-a)^{1/2}. \end{split}$$

Thus, for any δ with $0 < \delta < 1$, we have (2) by taking $\varepsilon = (\delta/4)^2$.

(3) Assume without loss of generality that $\omega(a) < \omega(b)$. Then there exists a synchronized interval J = [u', v'] such that $|I \cap J|/|I \cup J| \ge 1 - \varepsilon$. Moreover, u', v' is the unique solution of equation (8).

4. Stochastic integral

Let $L = L(\omega)$ be a measurable function of $\omega \in \Theta_0$ taking a value in positve integers. Let $\{\zeta_0 < \zeta_1 < \ldots\}$ be a finite or infinite sequence of measurable functions of $\omega \in \Theta_0$ such that $[\zeta_i, \zeta_{i+1}]$ is a synchronized interval of $\omega \in \Theta_0$ for any $i = 0, 1, \ldots$ and ζ_L is defined for any $\omega \in \Theta_0$. We call a sequence $\zeta := \{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$ a **synchronized net**. If, for an interval $I, I \subset$ $[\zeta_0, \zeta_L]$ holds for any $\omega \in \Theta_0$, we say that ζ covers I. We denote $\| \zeta \| := \|$ $\max_{0 \le i \le L-1}(\zeta_{i+1}-\zeta_i) \|_{\infty}$. Let C be a sub- σ -field of the probability space (Θ_0, P) . If the above L and $\zeta_{i \land L}$ $(i = 0, 1, \ldots)$ are measurable with respect to C, then we say that ζ is **measurable** with respect to C or ζ is C-measurable. If $\{Y\}$ is a set of measurable functions on the probability space (Θ_0, P) , then we say that ζ is $\{Y\}$ -measurable if it is measurable with respect to the σ -field generated by the functions in $\{Y\}$. Let $\zeta = \{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$ and $\eta = \{\eta_0 < \eta_1 < \cdots < \eta_K\}$ be synchronized nets. If for any $\omega \in \Theta_0, \zeta \subset \eta$ holds between the sets of values of functions in ζ and η , and if η is measurable with respect to ζ , we say that η is a **refinement** of ζ .

LEMMA 8: Let J be a bounded closed interval with J = [a, b] (a < b). Then, for any bounded closed interval I with $I \subset J^i$ and $\varepsilon > 0$, there exists a synchronized net ζ covering I with $\|\zeta\| < \varepsilon$ which is measurable with respect to $d\mathbf{N}|_J$, where $\alpha \mathbf{N}|_J := \{\mathbf{N}_t - \mathbf{N}_s; s, t \in J\}.$

Proof: We may assume that $\varepsilon > 0$ is small enough so that $I \subset [a + 2\varepsilon, b - 2\varepsilon]$. 1ST STEP: Let $\{(u_n, v_n); n = 1, 2, ...\}$ be a countable dense subset of

$$\{(x,y); -\varepsilon/2 < x < 0 < y < \varepsilon/2, \ \varepsilon/18 \le y - x < \varepsilon/2\}.$$

Since there exists an synchronized interval [c, d] of ω containing $a + \varepsilon$ with $\varepsilon/18 \le d - c < \varepsilon/2$, for δ with $0 < \delta < 1/200$, there exists $n = 1, 2, \ldots$ such that

$$|\omega(a+\varepsilon+v_n)-\omega(a+\varepsilon+u_n)|>(1-\delta)(v_n-u_n)^{1/2}.$$

Take the minimum n as this and define $d\mathbf{N}|_J$ -measurable functions $u := a + \varepsilon + u_n$ and $v := a + \varepsilon + v_n$. Then by Theorem 3, [u, v] is $(1 - \delta')$ -synchronized interval of ω for some $\delta' < 1/10$. Let u' and v' be the unique solution of equation (8) in Theorem 3 for this $(1 - \delta')$ -synchronized interval [u, v]. Then the functions u'and v' of $\omega \in \Theta$ are measurable with respect to $d\mathbf{N}|_J$. We define $\zeta_0 = u', \zeta_1 = v'$ if u' < v' and $\zeta_0 = v', \zeta_1 = u'$ if v' < u'.

2ND STEP: Assume that a sequence of $d\mathbf{N}|_{J}$ -measurable functions $\zeta_0 < \zeta_1 < \cdots < \zeta_k$ is defined so that $\zeta_0 < a + 2\varepsilon$ and $[\zeta_{i-1}, \zeta_i]$ is a synchronized interval with $\zeta_i - \zeta_{i-1} < \varepsilon$ for any i = 1, 2, ..., k. This is done for k = 1 in the 1st step.

We add ζ_{k+1} to get a longer sequence with this properties. Take the minimum nonnegative integer *i* such that $4(4/9)^i(\zeta_k - \zeta_{k-1}) < \varepsilon$. Since $[\zeta_{k-1}, \zeta_k]$ is a synchronized interval, for exactly one of ξ in $\{1/4, 4\}, [\zeta_k, \zeta_k + \xi(4/9)^i(\zeta_k - \zeta_{k-1})]$ is a synchronized interval. Define $\zeta_{k+1} = \zeta_k + \xi(4/9)^i(\zeta_k - \zeta_{k-1})$ with this ξ . Since ξ can be chosen in a $d\mathbf{N}|_J$ -measurable way by Theorem 2, ζ_{k+1} is measurable with respect to $d\mathbf{N}|_J$ such that $\zeta_{k+1} - \zeta_k < \varepsilon$.

FINAL STEP: We prove that we can continue this process until we get $\zeta_{L+1} > b - 2\varepsilon$. Then, $\zeta := \{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$ satisfies the required properties.

The only possible obstruction against this is that ζ_k converges to some point, say $\eta \leq b - \varepsilon$ as $k \to \infty$. We prove that this is impossible. To the contrary, suppose that this is the case. Then, there exists K such that for any $k \geq K$, the i in the description of the 2nd step is chosen as i = 0, so that all synchronized intervals $[\zeta_k, \zeta_{k+1}]$ for $k = K, K+1, \ldots$ have the same level. All consecutive $2 \cdot 3^n$ synchronized intervals of the same level contain a synchronized interval of level -n relative to them for any $n = 1, 2, \ldots$ A synchronized interval of level -n relative to the synchronized interval $[\zeta_K, \zeta_{K+1}]$ has length at least $(9/4)^n (\zeta_{K+1} - \zeta_K)$. Therefore, $\zeta_{K+2\cdot 3^n} - \zeta_K \geq (9/4)^n (\zeta_{K+1} - \zeta_K)$, which is a contradiction since, letting $n \to \infty$, we have $\eta - \zeta_k$ in the left-hand side and ∞ in the right-hand side.

Let $A(\omega, s)$ be a function on $\Theta_0 \times \mathbf{R}$ which is measurable in ω and continuous in s for any fixed ω . Then for any $a, b \in \mathbf{R}$ with a < b, we define a **stochastic** integral $\int_{a}^{b} A d\mathbf{N}_{t}$ as follows:

(9)
$$\int_{a}^{b} A d\mathbf{N}_{t} := \lim_{\substack{\|\zeta\|\to 0\\\zeta_{0}\to b\\\zeta_{L}\to b}} \sum_{i=0}^{L-1} A(\omega,\zeta_{i})(\mathbf{N}_{\zeta_{i+1}}-\mathbf{N}_{\zeta_{i}})$$

if the limit in the right-hand side exists, where $\zeta = \{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$ is a synchronized net.

THEOREM 4: Let H(x, s) be a real valued function of $x, s \in \mathbf{R}$ which is twice continuously differentiable in x and once continuously differentiable in s. Then for any a < b, the stochastic integral $\int_a^b H_x(\mathbf{N}_t, t) d\mathbf{N}_t$ exists and is $(H_x)_J \vee d\mathbf{N}|_J$ measurable with J = [a, b], where $(H_x)_J := \{H(\mathbf{N}_t, t); t \in J\}$. Moreover, the following formula holds:

(10)
$$H(\mathbf{N}_{b}, b) - H(\mathbf{N}_{a}, a) = \int_{a}^{b} H_{x}(\mathbf{N}_{t}, t) d\mathbf{N}_{t} + \int_{a}^{b} (\frac{1}{2} H_{xx}(\mathbf{N}_{t}, t) + H_{s}(\mathbf{N}_{t}, t)) dt.$$

Proof: The $(H_x)_J \vee d\mathbf{N}|_J$ -measurability of the stochastic integral follows from Lemma 8 if it exists, by taking the limit $\zeta_0 \downarrow a$ and $\zeta_L \uparrow b$. Therefore, it suffices to prove the existence of the stochastic integral and formula (10). For a net $\zeta = \{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$, denote

$$B(\zeta) := \sum_{i=0}^{L-1} H_x(\mathbf{N}_{\zeta_i}, \zeta_i)(\mathbf{N}_{\zeta_{i+1}} - \mathbf{N}_{\zeta_i}).$$

Then, by the Taylor expansion of H and the continuity of H, H_{xx} and H_s in (x, s) as well as the sample path \mathbf{N}_t in t, as $\parallel \zeta \parallel \to 0$, $\zeta_0 \to a$ and $\zeta_L \to b$ we have

$$\begin{split} H(\mathbf{N}_{b}, b) &- H(\mathbf{N}_{a}, a) \\ &= \sum_{i=0}^{L-1} \left(H(\mathbf{N}_{\zeta_{i+1}}, \zeta_{i+1}) - H(\mathbf{N}_{\zeta_{i}}, \zeta_{i}) \right) + o(1) \\ &= \sum_{i=0}^{L-1} \left(H_{x}(\mathbf{N}_{\zeta_{i}}, \zeta_{i})(\mathbf{N}_{\zeta_{i+1}} - \mathbf{N}_{\zeta_{i}}) + \frac{1}{2} H_{xx}(\mathbf{N}_{\zeta_{i}}, \zeta_{i})(\mathbf{N}_{\zeta_{i+1}} - \mathbf{N}_{\zeta_{i}})^{2} \\ &+ H_{t}(\mathbf{N}_{\zeta_{i}}, \zeta_{i})(\zeta_{i+1} - \zeta_{i}) + o(\zeta_{i+1} - \zeta_{i}) \right) + o(1) \\ &= B(\zeta) + \sum_{i=0}^{L-1} \left(\frac{1}{2} H_{xx}(\mathbf{N}_{\zeta_{i}}, \zeta_{i}) + H_{t}(\mathbf{N}_{\zeta_{i}}, \zeta_{i}) \right)(\zeta_{i+1} - \zeta_{i}) + o(1) \\ &= B(\zeta) + \int_{a}^{b} \left(\frac{1}{2} H_{xx}(\mathbf{N}_{t}, t) + H_{t}(\mathbf{N}_{t}, t) \right) dt + o(1), \end{split}$$

where we used the fact that $(\mathbf{N}_{\zeta_{i+1}} - \mathbf{N}_{\zeta_i})^2 = \zeta_{i+1} - \zeta_i$. Hence, $B(\zeta)$ converges. Thus, the stochastic integral exists and we have (10).

5. Prediction

Let H(x,s) be a real valued function of $x, s \in \mathbf{R}$ such that

(H1) H is twice continuously differentiable in x and once continuously differentiable in s, and

(H2) $H_x(x,s) > 0$ for any $x, s \in \mathbf{R}$.

We consider the stochastic process $Y_t = H(\mathbf{N}_t, t)$ $(t \in \mathbf{R})$. Our problem is to predict Y_t for $t \notin J$ from the observation $Y_J := \{Y_t; t \in J\}$, where J is a bounded closed interval with nonempty interior. The function H is considered to be unknown except for the property (H1) and (H2). All the measurable functions of the observation Y_J we construct in the following do not need any further knowledge on the unknown function H.

THEOREM 5: For any $\omega \in \Theta_0$ and $t \in \mathbf{R}$,

$$H_x(\mathbf{N}_t, t) = \limsup_{\substack{u, v \to t \\ u < v}} \frac{|Y_v - Y_u|}{(v - u)^{1/2}}$$

Let t_1 , t_2 with $t_1 < t_2$ tend to t, attaining the lim sup in the right-hand side of the above equality. Let $t_1' = (5t_1 + 4t_2)/9$ and $t_2' = (4t_1 + 5t_2)/9$. Then,

$$H_{xx}(\mathbf{N}_t, t) = \frac{9}{4} \lim \frac{-Y_{t_1} + Y_{t_1'} + Y_{t_2'} - Y_{t_2}}{(t_2 - t_1)^{1/2}},$$

$$H_s(\mathbf{N}_t, t) = \frac{3}{8} \lim \frac{Y_{t_1} - 9Y_{t_1'} + 3Y_{t_2'} + 5Y_{t_2}}{(t_2 - t_1)^{1/2}}.$$

Therefore, if $t \in J$, then those quantities $H_x(\mathbf{N}_t, t)$, $H_{xx}(\mathbf{N}_t, t)$ and $H_s(\mathbf{N}_t, t)$ are measurable functions of the observation Y_J .

Proof: Since, by the Taylor expansion of H, we have

$$Y_v - Y_u = H(\mathbf{N}_v, v) - H(\mathbf{N}_u, u)$$

= $H_x(\mathbf{N}_t, t)(\mathbf{N}_v - \mathbf{N}_u) + \frac{1}{2}H_{xx}(\mathbf{N}_t, t)(\mathbf{N}_v - \mathbf{N}_u)^2$
+ $H_s(\mathbf{N}_t, t)(v - u) + o(v - u)$

as $u, v \to t$, by Theorem 2 and (H2), we have

$$\begin{split} \limsup_{u,v \to t \ u < v} \frac{|Y_v - Y_u|}{(v-u)^{1/2}} = H_x(\mathbf{N}_t, t) \limsup_{u,v \to t \ u < v} \frac{|\mathbf{N}_v - \mathbf{N}_u|}{(v-u)^{1/2}} \\ = H_x(\mathbf{N}_t, t). \end{split}$$

By Theorem 3, the lim sup is attained if and only if $u, v \to t$, so that [u, v] is an $(1-\varepsilon)$ -synchronized interval of ω with $\varepsilon \to 0$. Therefore, the interval $[t_1, t_2]$ as in the statement of our theorem satisfies this condition. Furthermore, since we can approximate the $(1-\varepsilon)$ -synchronized interval $[t_1, t_2]$ by a synchronized interval close to it and approximate the following quantities for the former by those for the latter with small errors, we may assume that $[t_1, t_2]$ itself is synchronized. Consider the Taylor expansions for

$$\begin{split} H(\mathbf{N}_{t_{2'}}, t_{2'}) - H(\mathbf{N}_{t_{1'}}, t_{1'}), \\ H(\mathbf{N}_{t_{2}}, t_{2}) - H(\mathbf{N}_{t_{1'}}, t_{1'}), \\ H(\mathbf{N}_{t_{2}}, t_{2}) - H(\mathbf{N}_{t_{1}}, t_{1}), \end{split}$$

and using the relations

$$\begin{split} t_{2}' - t_{1}' = &(1/9)(t_{2} - t_{1}), \\ t_{2} - t_{1}' = &(5/9)(t_{2} - t_{1}), \\ \mathbf{N}_{t_{2}'} - \mathbf{N}_{t_{1}'} = &- &(1/3)\xi(t_{2} - t_{1})^{1/2}, \\ \mathbf{N}_{t_{2}} - \mathbf{N}_{t_{1}'} = &(1/3)\xi(t_{2} - t_{1})^{1/2}, \\ \mathbf{N}_{t_{2}} - \mathbf{N}_{t_{1}} = &(1/3)\xi(t_{2} - t_{1})^{1/2}, \end{split}$$

where $\xi = \operatorname{sgn}(\mathbf{N}_{t_2} - \mathbf{N}_{t_1})$, we have

$$\begin{split} Y_{t_{2'}} - Y_{t_{1'}} &= -(1/3)\xi H_x(\mathbf{N}_t,t)(t_2 - t_1)^{1/2} + (1/18)H_{xx}(\mathbf{N}_t,t)(t_2 - t_1) \\ &\quad + (1/9)H_s(\mathbf{N}_t,t)(t_2 - t_1) + o(t_2 - t_1), \\ Y_{t_2} - Y_{t_{1'}} &= (1/3)\xi H_x(\mathbf{N}_t,t)(t_2 - t_1)^{1/2} + (1/18)H_{xx}(\mathbf{N}_t,t)(t_2 - t_1) \\ &\quad + (5/9)H_s(\mathbf{N}_t,t)(t_2 - t_1) + o(t_2 - t_1), \end{split}$$

and

$$Y_{t_2} - Y_{t_1} = \xi H_x(\mathbf{N}_t, t)(t_2 - t_1)^{1/2} + \frac{1}{2}H_{xx}(\mathbf{N}_t, t)(t_2 - t_1) + H_s(\mathbf{N}_t, t)(t_2 - t_1) + o(t_2 - t_1).$$

By solving the above linear equation on $H_x(\mathbf{N}_t, t), H_{xx}(\mathbf{N}_t, t), H_s(\mathbf{N}_t, t)$ and letting $t_2 - t_1 \to 0$, we get the required formulas for $H_{xx}(\mathbf{N}_t, t)$ and $H_t(\mathbf{N}_t, t)$.

It is clear from the above formulas that if t belongs to the interior of J, then the quantities $H_{xx}(\mathbf{N}_t, t)$ and $H_t(\mathbf{N}_t, t)$ are measurable with respect to the observation Y_J . It follows from the continuity that the same result holds for any $t \in J$.

THEOREM 6: Let I, J be closed intervals with J = [a, b] (a < b) and $\emptyset \neq I^i \subset I \subset (a, b)$.

(1) For any $\delta > 0$, there exists $\varepsilon > 0$ such that for any $t \in J$ and $u, v \in (t - \varepsilon, t + \varepsilon)$,

$$Y_v - Y_u = H_x(\mathbf{N}_t, t)(\mathbf{N}_v - \mathbf{N}_u) + \Xi$$

with

$$|\Xi| \leq \delta(|\mathbf{N}_v - \mathbf{N}_u| + |v - u|^{1/2}).$$

(2) For any $\varepsilon > 0$, there exists a Y_J -measurable synchronized net covering I with $\| \zeta \| < \varepsilon$.

(3) $d\mathbf{N}|_J$ is measurable with respect to the observation Y_J . Hence, both terms in the right-hand side of (10) are Y_J -measurable.

Proof: (1) For any given $\delta > 0$, take ε with $0 < \varepsilon < 1$ satisfying (i) $|H_x(x',s') - H_x(x,s)| < \delta$ for any (x,s) and (x',s') with

$$|s,s' \in J', |s-s'| < \varepsilon, |x|, |x'| \le (|a'|^{\vee}|b'|)^{1/2} \text{ and } |x-x'| < \varepsilon^{1/2},$$

(ii) $\sup_{s \in J', |x| \le (|a'|^{\vee}|b'|)^{1/2}} |H_s(x,s)| \cdot (2\varepsilon)^{1/2} < \delta$, where a' = a - 1, b' = b + 1, J' := [a',b']. Then for any $t \in J$ and $u, v \in (t - \varepsilon, t + \varepsilon)$,

$$Y_{v} - Y_{u} = H(\mathbf{N}_{v}, v) - H(\mathbf{N}_{u}, u)$$

= $(H(\mathbf{N}_{v}, v) - H(\mathbf{N}_{v}, u)) + (H(\mathbf{N}_{v}, u) - H(\mathbf{N}_{u}, u))$
= $H_{s}(\mathbf{N}_{v}, t')(v - u) + H_{x}(x', u)(\mathbf{N}_{v} - \mathbf{N}_{u})$
= $H_{x}(\mathbf{N}_{t}, t)(\mathbf{N}_{v} - \mathbf{N}_{u}) + \Xi$

with

$$\Xi := H_s(\mathbf{N}_v, t')(v-u) + (H_x(x', u) - H_x(\mathbf{N}_t, t))(\mathbf{N}_v - \mathbf{N}_u),$$

where t' and x' satisfy $|t' - t| < \varepsilon$ and $|x' - \mathbf{N}_t| < \varepsilon^{1/2}$. Then using (i) and (ii), we have

$$\begin{split} |\Xi| &\leq |H_s(\mathbf{N}_v, t')||v - u| + |H_x(x', u) - H_x(\mathbf{N}_t, t)||\mathbf{N}_v - \mathbf{N}_u| \\ &\leq |H_s(\mathbf{N}_v, t')|(2\varepsilon)^{1/2}|v - u|^{1/2} + \delta|\mathbf{N}_v - \mathbf{N}_u| \\ &\leq \delta(|\mathbf{N}_v - \mathbf{N}_u| + |v - u|^{1/2}). \end{split}$$

(2) Take sufficiently small $\delta > 0$ determined finally in the following 2nd step. At this moment, we assume that

(11)
$$0 < \delta < \inf_{t \in J, \ |x| \le (|a|^{\vee}|b|)^{1/2}} H_x(x,t)/1200.$$

We may assume that $\varepsilon > 0$ is small enough so that the statement (1) holds with this δ and $I \subset [a + 2\varepsilon, b - 2\varepsilon]$. We use a similar construction as in the proof of Lemma 8.

1ST STEP: Let $\{(u_n, v_n); n = 1, 2, ...\}$ be a countable dense subset of

$$\{(x,y); -\varepsilon/2 < x < 0 < y < \varepsilon/2, \ \varepsilon/18 \le y - x < \varepsilon/2\}.$$

There exists a synchronized interval [c, d] of ω containing $t := a + \varepsilon$ with $\varepsilon/18 \le d - c < \varepsilon/2$. Then, we have by (1)

$$\begin{aligned} |Y_d - Y_c| &\geq (H_x(\mathbf{N}_t, t) - \delta) |\mathbf{N}_d - \mathbf{N}_c| - \delta (d-c)^{1/2} \\ &= (H_x(\mathbf{N}_t, t) - \delta) (d-c)^{1/2} - \delta (d-c)^{1/2} \\ &= (H_x(\mathbf{N}_t, t) - 2\delta) (d-c)^{1/2}. \end{aligned}$$

Hence, there exists $n = 1, 2, \ldots$ such that

$$|Y_{t+v_n} - Y_{t+u_n}| > (H_x(\mathbf{N}_t, t) - 3\delta)(v_n - u_n)^{1/2}.$$

Take the minimum n as this and define functions $u := t + u_n$ and $v := t + v_n$, which are Y_J -measurable by Theorem 5.

Since as above we have

$$\begin{aligned} (H_x(\mathbf{N}_t,t)-3\delta)(v-u)^{1/2} < &|Y_v-Y_u| \\ \leq &(H_x(\mathbf{N}_t,t)+\delta)|\mathbf{N}_v-\mathbf{N}_u| + \delta(v-u)^{1/2}, \end{aligned}$$

we have by (11) that

$$|\mathbf{N}_v - \mathbf{N}_u| > (1 - 1/200)(v - u)^{1/2}.$$

Then by Theorem 3, [u, v] is a (1 - 1/11)-synchronized interval of ω . Let u' and v' be the unique solution of equation (8) in Theorem 3 for this (1 - 1/11)-synchronized interval [u, v].

We prove that u', v' is also the unique solution of the equation

(12)
$$u', v' \in [u - (1/7)(v - u), v + (1/7)(v - u)],$$
$$Y_{u'} = \min\{Y_s; s \in [u - (1/7)(v - u), v + (1/7)(v - u)]\},$$
$$Y_{v'} = \max\{Y_s; s \in [u - (1/7)(v - u), v + (1/7)(v - u)]\}.$$

Take any $s \in [u - (1/7)(v - u), v + (1/7)(v - u)]$ with $s \neq u'$. Then by Lemma

7, $\mathbf{N}_s - \mathbf{N}_{u'} \ge (1/3)|s - u'|^{1/2}$. Therefore as above, we have

$$\begin{split} Y_s - Y_{u'} &\geq (H_x(t,\mathbf{N}_t) - \delta)(\mathbf{N}_s - \mathbf{N}_{u'}) - \delta|s - u'|^{1/2} \\ &\geq (H_x(\mathbf{N}_t,t) - \delta)(1/3)|s - u'|^{1/2} - \delta|s - u'|^{1/2} \\ &= (H_x(\mathbf{N}_t,t) - 4\delta)(1/3)|s - u'|^{1/2} \\ &\geq (1200 - 4)\delta(1/3)|s - u'|^{1/2}, \end{split}$$

so that u' is the unique solution of equation (12). Similarly, v' is the unique solution of equation (12). Thus, u' and v' are Y_J -measurable functions on $\omega \in \Theta$.

We define $\zeta_0 = u'$, $\zeta_1 = v'$ if u' < v' and $\zeta_0 = v'$, $\zeta_1 = u'$ if v' < u'.

2ND STEP: Assume that a sequence of Y_J -measurable functions $\zeta_0 < \zeta_1 < \cdots < \zeta_k$ is defined so that $\zeta_0 < a + 2\varepsilon$ and $[\zeta_{i-1}, \zeta_i]$ is a synchronized interval with $\zeta_{i-1} - \zeta_i < \varepsilon$ for any $i = 1, 2, \ldots, k$. This is done for k = 1 in the 1st step.

We add ζ_{k+1} to get a longer sequence with these properties. Take the minimum nonnegative integer *i* such that $4(4/9)^i(\zeta_k - \zeta_{k-1}) < \varepsilon$. Since $[\zeta_{k-1}, \zeta_k]$ is a synchronized interval, for exactly one of ξ in $\{1/4, 4\}, [\zeta_k, \zeta_k + \xi(4/9)^i(\zeta_k - \zeta_{k-1})]$ is a synchronized interval. Define $\zeta_{k+1} = \zeta_k + \xi(4/9)^i(\zeta_k - \zeta_{k-1})$ with this ξ .

What we have to prove is that ξ is chosen in a Y_J -measurable way. Let $\xi \in \{1/4, 4\}$ be such that $[t, \zeta]$ is a synchronized interval and let $\xi' \in \{1/4, 4\}$ be $\xi' \neq \xi$, so that $[t, \zeta']$ is not a synchronized interval, where we put $t := \zeta_k$, $\zeta := t + \xi(4/9)^i(t - \zeta_{k-1})$ and $\zeta' = t + \xi'(4/9)^i(t - \zeta_{k-1})$. Let $[t, \zeta'']$ be the minimal synchronized interval containing $[t, \zeta']$. Then, we can prove that there exists p > 0 such that $(4/9) + p < (\zeta' - t)/(\zeta'' - t) < 1 - p$. Therefore, by Theorem 2, there exists q with 1/2 < q < 1 such that

$$|\mathbf{N}_{\zeta'} - \mathbf{N}_t| < q |\zeta' - t|^{1/2}$$

while

$$|\mathbf{N}_{\zeta} - \mathbf{N}_t| = |\zeta - t|^{1/2}.$$

Then, as we proved in the 1st step, we have

$$\begin{aligned} |Y_{\zeta'} - Y_t| &\leq (H_x(\mathbf{N}_t, t) + \delta) |\mathbf{N}_{\zeta'} - \mathbf{N}_t| + \delta(\zeta' - t)^{1/2} \\ &\leq (H_x(\mathbf{N}_t, t) + 3\delta)q(\zeta' - t)^{1/2}, \end{aligned}$$

while

$$\begin{aligned} |Y_{\zeta} - Y_t| \geq &(H_x(\mathbf{N}_t, t) - \delta) |\mathbf{N}_{\zeta} - \mathbf{N}_t| - \delta(\zeta - t)^{1/2} \\ = &(H_x(\mathbf{N}_t, t) - 2\delta)(\zeta - t)^{1/2}. \end{aligned}$$

Therefore, by choosing small $\delta > 0$, we have

$$\begin{aligned} |Y_{\zeta'} - Y_t| / (\zeta' - t)^{1/2} &\leq H_x(\mathbf{N}_t, t)(1 + 2q)/3, \\ |Y_{\zeta} - Y_t| / (\zeta - t)^{1/2} &\geq H_x(\mathbf{N}_t, t)(2 + q)/3, \end{aligned}$$

so that we can distinguish these 2 cases by the observation Y_J . Hence, ξ is Y_J -measurable.

Thus, the function ζ_{k+1} on $\omega \in \Theta$ is Y_J -measurable such that $[\zeta_k, \zeta_{k+1}]$ is a synchronized interval with $\zeta_{k+1} - \zeta_k < \varepsilon$.

FINAL STEP: We continue this process until we get $\zeta_{L+1} > b - \varepsilon$. Then, $\zeta := \{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$ satisfies the required properties. This can be done by the same reasoning as in the final step of the proof of Lemma 8.

(3) Let $\zeta = \{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$ be a Y_I -measurable synchronized net covering J. If necessary, we repeat the division of a synchronized interval $[\zeta_i, \zeta_{i+1}]$ by $[\zeta_i, \zeta'_i]$, $[\zeta'_i, \zeta'_{i+1}]$, $[\zeta'_{i+1}, \zeta_{i+1}]$ with $\zeta'_i = (5\zeta_i + 4\zeta_{i+1})/9$ and $\zeta'_{i+1} = (4\zeta_i + 5\zeta_{i+1})/9$; we may assume that there exists $[\zeta_i, \zeta_{i+1}] \subset I^i$ such that $\zeta_{i+1} - \zeta_i$ is sufficiently small so that $Y_{\zeta_{i+1}} - Y_{\zeta_i}$ has the same sign as $\mathbf{N}_{\zeta_{i+1}} - \mathbf{N}_{\zeta_i}$. Then, we know from the observation Y_I whether the synchronized intervals $[\zeta_j, \zeta_{j+1}]$'s are increasing and decreasing alternatively, we know $\xi = \operatorname{sgn}(\mathbf{N}_{j+1} - \mathbf{N}_j)$ for all $j = 0, 1, \ldots, L - 1$. Since

$$\mathbf{N}_t - \mathbf{N}_{\zeta_j} = \xi (t - \zeta_j)^{1/2} N_\infty \left(\frac{t - \zeta_j}{\zeta_{j+1} - \zeta_j} \right)$$

for any $t \in [\zeta_j, \zeta_{j+1}]$ by Theorem 2, we get $d\mathbf{N}|_J$ from the observation Y_I , hence by Y_J considering the limit.

LEMMA 9: (1) Let $\{\zeta_0 < \zeta_0 < \zeta_1 < \cdots < \zeta_L\}$ be a synchronized net. Let $(\zeta_{i+1} - \zeta_i)/(\zeta_i - \zeta_{i-1}) = \xi(4/9)^j$ with $\xi \in \{1/4, 4\}$ and $j \in \mathbb{Z}$ for some $i = 1, 2, \ldots, L-1$ and $\omega \in \Theta$. If j > 0, then for $\eta := \zeta_i + \xi(\zeta_i - \zeta_{i-1}), [\zeta_i, \eta]$ is a synchronized interval of $\omega \in \Theta_0$, and if $\eta \leq \zeta_L$, then there exists n with $i+1 < n \leq L$ such that $\eta = \zeta_n$. If j < 0, then for $\eta := \zeta_i - \xi(\zeta_{i+1} - \zeta_i), [\eta, \zeta_i]$ is a synchronized interval of $\omega \in \Theta_0$, and if $\eta \geq \zeta_0$, then there exists n with $0 \leq n < i-1$ such that $\eta = \zeta_n$.

(2) For any neighboring synchronized intervals [a, b], [b, c] and [c, d] of $\omega \in \Theta_0$, if (c-b)/(b-a) = 1/4 and (d-c)/(c-b) = 4, then [a, d] is a synchronized interval of ω .

(3) For any neighboring synchronized intervals [a, b], [b, c] and [c, d] of $\omega \in \Theta_0$, if (c-b)/(b-a) = 1/4 and (d-c)/(c-b) = 1/4, then [a - (9/4)(b-a), b] and [b, b + (9/4)(c-b)] are synchronized intervals of ω .

(4) For any neighboring synchronized intervals [a, b], [b, c] and [c, d] of $\omega \in \Theta_0$, if (c-b)/(b-a) = 4 and (d-c)/(c-b) = 4, then [b-(9/4)(c-b), c] and [c, c+(9/4)(d-c)] are synchronized intervals of ω .

Proof: (1) Assume that j > 0. Let K be the nearest common ancester of $[\zeta_{i-1}, \zeta_i]$ and $[\zeta_i, \zeta_{i+1}]$. Let $[\zeta_{i-1}, \zeta_i]$ have level k relative to K. Then by (2) of Lemma 2, $[\zeta_i, \zeta_{i+1}]$ has level k+j relative to K. Since k > 0, the j-th ancester of $[\zeta_i, \zeta_{i+1}]$, is neighboring to $[\zeta_{i-1}, \zeta_i]$. Let it be $[\zeta_i, \eta]$. Then, $\eta - \zeta_i = \xi(\zeta_i - \zeta_{i-1})$. If $\eta \leq \zeta_L$, then by (1) of Lemma 2, there exists n with $i + 1 < n \leq L$ such that $\eta = \zeta_n$. The proof for the case j < 0 is similar.

(2) Let K be the nearest common ancester of [a, b], [b, c] and [c, d]. It is sufficient to prove that K = [a, d]. Suppose to the contrary that $K \neq [a, d]$. Then, [b, c] has level j > 1 relative to K and is not middle. Assume that it is left. Then, [c, d] is middle since [b, c] and [c, d] have the same level. Thus (d-c)/(c-b) = 1/4, contradicting the assumption. If [b, c] is right, we have (c-b)/(b-a) = 4, contradicting the assumption.

(3) Since neither [a, b] nor [b, c] is middle by the assumption, we have that [a, b] is right and [b, c] is left. Then, the first ancestor of [a, b] is [b - (9/4)(b - a), b] and the first ancestor of [b, c] is [b, b + (9/4)(c - b)].

(4) Let K be the nearest common ancester of [a, b] and [b, c]. If K is not the first ancestor of [a, b] and [b, c], then [b, c] is left, which contradicts (d-c)/(c-b) = 4. Hence, K is the first ancestor of [a, b] and [b, c]. This implies that K = [c - (9/4)(c - b), c] and that K is not an ancestor of [c, d], since (c-b)/(b-a) = 4. Therefore, the nearest common ancestor of [b, c] and [c, d] is not their first ancestor. Thus, [c, d] is left and the first ancestor of [c, d] is [c, c + (9/4)(d-c)].

Let $\zeta = \{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$ and $\eta = \{\eta_0 < \eta_1 < \cdots < \eta_M\}$ be synchronized nets such that η is measurable with respect to ζ . We say that η is a **reduction** of ζ if $\eta_0 \leq \zeta_0 < \zeta_L \leq \eta_M$ and $\{\eta_1 < \eta_2 < \cdots < \eta_{M-1}\} \subset \{\zeta_1 < \zeta_2 < \cdots < \zeta_{L-1}\}$ holds.

THEOREM 7: For any Y_J -measurable synchronized net $\zeta = \{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$, there exists a reduction of it consisting at most of 3 synchronized intervals with the same level.

Proof: Let $\eta = \{\eta_0 < \eta_1 < \cdots < \eta_M\}$ be a reduction of ζ with the smallest number of intervals M. If the levels of the synchronized intervals contained in it are not the same, then there exists $i = 0, 1, \ldots, M - 1$ such that

$$(\eta_{i+1} - \eta_i)/(\eta_i - \eta_{i-1}) = \xi(4/9)^j$$
 with $\xi \in \{1/4, 4\}$ and $j \neq 0$.

If j > 0, then by Lemma 9, $[\eta_i, \eta_i + \xi(\eta_i - \eta_{i-1})]$ is a synchronized interval and either there exists n with $i + 1 < n \leq M$ such that $\eta_n = \eta_i + \xi(\eta_i - \eta_{i-1})$ or $\eta_i + \xi(\eta_i - \eta_{i-1}) > \eta_L$. In the former case, we have a further reduction of ζ , $\{\eta_0 < \eta_1 < \cdots < \eta_i < \eta_n < \cdots < \eta_M\}$ with a number of intervals less than M, contradicting the assumption on M. In the latter case, we have a further reduction of ζ , $\eta' := \{\eta_0 < \eta_1 < \cdots < \eta_i < \eta_i + \xi(\eta_i - \eta_{i-1})\}$, which has a number of intervals at most M. By the assumption on M, it is exactly M and i = M - 1.

If j < 0, then by Lemma 9, $[\eta_i - \xi(\eta_{i+1} - \eta_i), \eta_i]$ is a synchronized interval and either there exists n with $0 \le n < i - 1$ such that $\eta_n = \eta_i - \xi(\eta_{i+1} - \eta_i)$ or $\eta_i - \xi(\eta_{i+1} - \eta_i) < \eta_0$. In the former case, we have a further reduction of ζ , $\{\eta_0 < \eta_1 < \cdots < \eta_n < \eta_i < \cdots < \eta_M\}$ with a number of intervals less than M, contradicting the assumption on M. In the latter case, we have a further reduction of ζ , $\eta' := \{\eta_i - \xi(\eta_{i+1} - \eta_i) < \eta_i < \cdots < \eta_M\}$, which has a number of intervals at most M. By the assumption on M, it is exactly M and i = 1.

If the levels of the synchronized intervals contained in η' are not the same, we repeat the above procedure to get finally a futher reduction of ζ such that it has a number M of synchronized intervals with the same level. Hence, we may assume that $\eta = \{\eta_0 < \eta_1 < \cdots < \eta_M\}$ is a reduction of ζ which has the smallest number of intervals M with the same level.

Suppose that $M \ge 4$. Then, in the sequence of $(\eta_{i+1} - \eta_i)/(\eta_i - \eta_{i-1})$ (i = 1, 2, ..., M - 1), there exists i = 1, 2, ..., M - 2 such that the combination $((\eta_{i+1} - \eta_i)/(\eta_i - \eta_{i-1}), (\eta_{i+2} - \eta_{i+1})/(\eta_{i+1} - \eta_i))$ is either (1/4, 4), (1/4, 1/4) or (4, 4). Then by Lemma 9, we find a further reduction of ζ with a smaller number of intervals, contradicting the assumption on M. Hence $M \le 3$.

THEOREM 8: For any bounded closed interval J = [a, b] with a < b, there exists measurable functionals $\tau: C(J) \to [0, \infty)$ and $G: C(J) \to \Theta$ such that

- (1) $\Pr[G(Y_J)(t) = \mathbf{N}_{b+t} \mathbf{N}_b | t \le \tau(Y_J)] = 1$ for any t > 0, and
- (2) $\Pr[\tau(Y_J) < t] \le 9t/(4B)$ for any t > 0,

where C(J) is the space of continuous functions on J and we set B := (b-a)/21.

Proof: By Theorem 6, there exists a Y_J -measurable synchronized net covering

[a, b]. Taking its reduction obtained in Theorem 7, we get a Y_J -measurable synchronized net $\eta := \{\eta_0 < \eta_1 < \cdots < \eta_M\}$ satisfying

- (i) $M \le 3$,
- (ii) the synchronized intervals in η have the same level, and
- (iii) $\eta_0 \leq a < b \leq \eta_M$.

Define $\tau = \tau(Y_J) := \eta_M - b$ and

$$G(Y_J)(t) := \begin{cases} 0, & t < 0, \\ \mathbf{N}_{b+t} - \mathbf{N}_b, & 0 \le t \le \tau, \\ \mathbf{N}_{b+\tau} - \mathbf{N}_b, & t > \tau. \end{cases}$$

Then (1) is clear from the definitions of τ and G together with (3) of Theorem 6. Let $b \in [\eta_i, \eta_{i+1}]$. Then

$$\eta_{i+1} - \eta_i \ge (\eta_M - \eta_0)/(1 + 4 + 4^2) \ge (b - a)/21 = B.$$

Let [u, v] be the minimal synchronized interval containing b with $v - u \ge B$. Since $[u, v] \subset [\eta_i, \eta_{i+1}]$, we have $\tau' := v - b \le \eta_{i+1} - b \le \eta_M - b = \tau$.

Take t > 0 with $t \le (4/9)B$ and let n = [B/t]. If $\tau'(\omega) \in [0, t)$, then $\tau'(\omega - jt) \in [jt, (j+1)t)$ for any $j = 0, 1, \ldots, n-1$. Hence, for any $j = 0, 1, \ldots, n-1$, we have

$$\Pr(\tau'(\omega) \in [0,t)) \le \Pr(\tau'(\omega - jt) \in [jt, (j+1)t)) = \Pr(\tau'(\omega) \in [jt, (j+1)t)),$$

where we used the fact that the probability measure P is invariant under the addition. Therefore, we have $Pr(\tau' < t) \leq 1/n$, since

$$n \Pr(\tau' \in [0, t)) \le \sum_{i=0}^{n-1} P(\tau' \in [jt, (j+1)t)) \le \Pr(\tau' \in [0, B)) \le 1.$$

Thus we have (2), since $\Pr(\tau < t) \leq \Pr(\tau' < t) \leq 1/n \leq 9t/(4B)$ for any t < 4B/9. For $t \geq 4B/9$, (2) holds trivially since $9t/(4B) \geq 1$.

We construct a predictor for Y_c with c > b based on the observation Y_J , where J = [a, b]. We use $G(Y_J)(c)$ to estimate $\mathbf{N}_c - \mathbf{N}_b$. By Theorem 8, if $c - b \leq \tau(Y_J)$, then the estimation is exact. To estimate $Y_c = H(\mathbf{N}_c, c)$, we use the Taylor expansion at (\mathbf{N}_b, b) with $G(Y_J)(c)$ for $\mathbf{N}_c - \mathbf{N}_b$:

$$\hat{Y}_c := Y_b + H_x(\mathbf{N}_b, b)G(Y_J)(c) + \frac{1}{2}H_{xx}(\mathbf{N}_b, b)G(Y_J)(c)^2 + H_s(\mathbf{N}_b, b)(c-b).$$

Note that \hat{Y}_c is a measurable function of the observation Y_J by Theorem 6. The value can be calculated based on the observation without using any further information on the unknown function H than (H1) and (H2).

THEOREM 9: We have

$$E[(\hat{Y}_c - Y_c)^2] = o((c-b)^2) + O\left(\frac{(c-b)^2}{b-a}\right)$$

as $c \downarrow b$ with C(b) in (2) in Section 1 as the constant in O().

Proof: Since

$$Y_{c} = Y_{b} + H_{x}(\mathbf{N}_{b}, b)G(Y_{J})(c) + \frac{1}{2}H_{xx}(\mathbf{N}_{b}, b)G(Y_{J})(c)^{2} + H_{s}(\mathbf{N}_{b}, b)(c-b) + o(c-b),$$

 $\hat{Y_c} - Y_c = o(c-b)$ holds if $c-b \leq \tau(Y_J)$. If otherwise, $\hat{Y_c} - Y_c = O((c-b)^{1/2})$ since $|G(Y_J)(c)| \leq (c-b)^{1/2}$, $|\mathbf{N}_c - \mathbf{N}_b| \leq (c-b)^{1/2}$ and

$$|G(Y_J)(c) - (\mathbf{N}_c - \mathbf{N}_b)| = |\mathbf{N}_{\tau(Y_J)} - \mathbf{N}_b| \le (c - b)^{1/2},$$

so that

$$(\hat{Y}_c - Y_c)^2 \le (1+\delta) \sup_{|x| \le |b|^{1/2}} |H_x(x,b)|^2 (c-b)$$

for any $\delta > 0$ as $c \to b$. Since by Theorem 8, $\Pr[\tau(Y_J) < c-b] \le 48(c-b)/(b-a)$, we have

$$\begin{split} \mathrm{E}[(\hat{Y}_{c} - Y_{c})^{2}] =& \mathrm{E}[(\hat{Y}_{c} - Y_{c})^{2} \ | \tau(Y_{J}) \geq c - b] \ \mathrm{Pr}[\tau(Y_{J}) \geq c - b] \\ &+ \mathrm{E}[(\hat{Y}_{c} - Y_{c})^{2} \ | \tau(Y_{J}) < c - b] \ \mathrm{Pr}[\tau(Y_{J}) < c - b] \\ &\leq o(c - b)^{2} + O\left(\frac{(c - b)^{2}}{b - a}\right) \end{split}$$

with C(b) in (2) as the constant in O().

ACKNOWLEDGEMENT: The author thanks the anonymous referee for his suggestions and encouragement.

References

- Teturo Kamae, Linear expansions, strictly ergodic homogeneous cocycles and fractals, Israel Journal of Mathematics 106 (1998), 313-337.
- [2] Benoit B. Mandelbrot, A multifractal walk down Wall Street, Scientific American, February, 1999.