STOCHASTIC ANALYSIS BASED ON DETERMINISTIC BROWNIAN MOTION

BY

TETURO KAMAE

Department of Mathematics, Osaka City University 558-8585 Osaka, Japan e-mail: kamae@sci.osaka-cu.ac.jp

ABSTRACT

A deterministic version of the It6 calculus is presented. We consider a model $Y_t = H(\mathbf{N}_t, t)$ with a deterministic Brownian \mathbf{N}_t and an unknown function H. We predict Y_c from the observation $\{Y_t; t \in [a,b]\}$, where $a < b < c$. We prove that there exists an estimator Y_t based on the observation such that $E[(\hat{Y}_t - Y_c)^2] = O((c - b)^2)$ as $c \downarrow b$.

1. Introduction

Deterministic Brownian motions are stochastic processes with noncorrelated, stationary and strictly ergodic increments having 0-entropy and 0-expectation. The self-similarity of order 1/2 follows from these properties. Such processes have a lot of variety and have different properties. This is not the case of the Brownian motion where the process is characterized as a process with stationary and independent increments with 0-expectation and standard variance.

Among the deterministic Brownian motions, the simplest one is the N-process $(N_t; t \in \mathbb{R})$ which is defined by the author in Example 8 of [K]. It comes from a piecewise linear function called the N_1 -function (in Figure 1). It is time reversible.

The aim of this paper is to develop stochastic analysis based on the N-process. We consider a process $Y_t = H(\mathbf{N}_t, t)$, where the function $H(x, s)$ is twice continuously differentible in x and once continuously differentible in s and $H_x(x, s) > 0$. The function H is considered completely unknown except for these properties.

Received February 7, 2000

We want to predict the value Y_c from the observation $Y_J := \{Y_t; t \in J\}$, where $J = [a, b]$ and $a < b < c$. We prove in Theorem 9 that there exists an estimator \hat{Y}_c such that

(1)
$$
E[(\hat{Y}_c - Y_c)^2] = o((c-b)^2) + O\left(\frac{(c-b)^2}{b-a}\right)
$$

as $c \downarrow b$ with the following $C(b)$ as the constant in $O($):

(2)
$$
C(b) := 50 \sup_{|x| \le |b|^{1/2}} |H_x(x, b)|^2.
$$

One of the motivations of our paper is given by Benoit B. Mandelbrot [2], who mentioned that the simulation of the stock market by the Brownian motion contains too much randomness. An actual market has a strong negative correlation between the fluctuations of price on a day and the next day. He suggests using the N-shaped function as the base of the sinmlation.

Our model has a lot of similarities to the Itô process. For example, we have an Itô formula (Theorem 4). Nevertheless, there is a big difference between them. Our process has 0-entropy while the Itô process has ∞ -entropy. Therefore, we have a much better possibility of predicting the future. Theoretically, if we have complete information about the function H , and complete data of Y_t in the past, we should be able to predict the future without error. But the actual setting is with the unknown function H and the limited observation Y_t for a bounded interval J. The best we can do is order $O((c - b)^2)$ in the above estimate (1), and $O(c - b)$ in the case of an Itô process.

A sample path from an N-process repeats the N_1 -function in various scales. The main idea for the prediction, called synchronization, is to find out the positions and the scales of the appearances of N_1 -function in the sample path. An appearance of the N_1 -function in a sample path is a part of bigger N_1 -functions while containing smaller ones. Along the 3 line segments in an appearance of the N_1 -function, the sample path either increases at the first part, then decreases and increases, or decreases at the first part, then increases and decreases. Thus, it has a strong correlation along the synchronized intervals, while the process itself has noncorrelated increments.

Another motivation is to create a sample path of Brownian motion in a deterministic way without using a random mechanism. Our N-process is strictly ergodic so that any chosen path realizes probablistic properties of the process. We don't need a randomization procedure but just take one, for example, the N_{∞} -function itself. Of course, it is not exactly like a path of the Brownian motion, but shares the quadratic structure with Brownian motion. If we take a derivative in some sense of the sample path, we get a white noise. Thus, our N-process provides a method of generating a random number.

2. N-process

We consider the **N-process** (N_t ; $t \in \mathbf{R}$), which is the stochastic process defined in Example 8 of [1] for $\alpha = 1/2$. We repeat the definition in a slightly different way as follows.

Define a continuous piecewise linear function N_1 (see Figure 1) on the interval $[0, 1]$ by

$$
N_1(x) = \begin{cases} \frac{3}{2}x, & 0 \le x \le 4/9, \\ -3x + 2, & 4/9 \le x \le 5/9, \\ \frac{3}{2}x - \frac{1}{2}, & 5/9 \le x \le 1. \end{cases}
$$

Let N_2 be the continuous piecewise linear function on [0, 1] obtained by replacing 3 line segments in N_1 by self-affine images of N_1 or $-N_1$ keeping the 2 end points fixed, that is,

$$
N_2(x) = \begin{cases} \frac{2}{3}N_1(\frac{9}{4}x), & 0 \le x \le 4/9, \\ \frac{2}{3} - \frac{1}{3}N_1(9x - 4), & 4/9 \le x \le 5/9, \\ \frac{1}{3} + \frac{2}{3}N_1(\frac{9}{4}x - \frac{5}{4}), & 5/9 \le x \le 1. \end{cases}
$$

Let N_3 be the the continuous piecewise linear function on [0, 1] obtained by replacing 9 line segments in N_2 by self-affine images of N_1 or $-N_1$ as before. In the same way, we obtain N_n from N_{n-1} for $n = 4, 5, \ldots$. For covenience, we define N_0 by $N_0(t) = t$ for any $t \in [0, 1]$.

We prove that the function N_n converges pointwise as n tends to infinity to a continuous function, say N_{∞} on [0,1]. Let $a, b \in [0, 1]$ with $a < b$. The interval [a, b] is called a **synchronized interval of level** n if $(a, N_n(a))(b, N_n(b))$ is one of the 3ⁿ line segments consisting of the graph of the function N_n for $n = 0, 1, 2, \ldots$ In this case, we have for any $m \geq n$ that

1. $N_m(a) = N_n(a)$ and $N_m(b) = N_n(b)$,

2.
$$
N_n(a) < N_m(t) < N_n(b)
$$
 or $N_n(a) > N_m(t) > N_n(b)$ for any $t \in (a, b)$,

- 3. $|N_n(b) N_n(a)| = |b a|^{1/2}$, and
- 4. $b-a=(\frac{4}{6})^{\circ}(\frac{1}{6})^{\circ}$ for some $i=0,1,\ldots,$

Take any $t \in [0, 1]$. For any $\varepsilon > 0$, there exists n and a synchronized interval of level n, say $[a, b]$ with $t \in [a, b]$ and $|b - a| < \varepsilon^2$. Then for any $m, m' \ge n$,

$$
|N_m(t) - N_{m'}(t)| \le |N_n(b) - N_n(a)| = |b - a|^{1/2} < \varepsilon.
$$

Thus, $N_m(t)$ converges as $m \to \infty$. The limit will be denoted by $N_\infty(t)$.

Let us prove the continuity of the function N_{∞} . Take any $s, t \in [0, 1]$ with $0 < t - s \leq (1/9)^n$ for some $n = 1, 2, \ldots$ Then there exists 2 neighboring synchronized intervals of level n, say $[a, b]$ and $[b, c]$ such that $[s, t] \subset [a, c]$. Then we have

$$
|N_{\infty}(t) - N_{\infty}(s)| \le |N_{n}(b) - N_{n}(a)| + |N_{n}(c) - N_{n}(b)|
$$

= $|b - a|^{1/2} + |c - b|^{1/2} \le 2\left(\frac{4}{9}\right)^{n/2}$

Thus, the function N_{∞} is continuous.

Figure 1. N_1 , N_2 , N_3 and N_{∞} .

We define a function $\tilde{N}_{\infty} : \mathbf{R} \to \mathbf{R}$ which is an extension of N_{∞} by

$$
\tilde{N}_{\infty}(t) = \begin{cases} 0, & t < 0, \\ N_{\infty}(t), & 0 \le t \le 1, \\ 1 & t > 1. \end{cases}
$$

Now we randomize \tilde{N}_{∞} to get the N-process $(\mathbf{N}_t; t \in \mathbf{R})$.

Let Θ be the set of continuous functions $\omega: \mathbf{R} \to \mathbf{R}$ with $\omega(0) = 0$. We consider Θ as a topological space with the compact open topology, that is, $\omega_n \in \Theta$ converges to $\omega \in \Theta$ as *n* tends to infinity if and only if $\omega_n(t)$ converges to $\omega(t)$ uniformly on each bounded set of t. For $\omega \in \Theta$ and $s \in \mathbb{R}$, we define the **addition** $\omega + s \in \Theta$ (see Figure 2) by

$$
(\omega + s)(t) = \omega(s+t) - \omega(s).
$$

Figure 2. $\omega, \omega + s$ and $2(\omega + s)$.

For $\omega \in \Theta$ and $\lambda \in \mathbf{R}_+$, we define the **multiplication** $\lambda \omega \in \Theta$ by

$$
(\lambda \omega)(t) = \lambda^{1/2} \omega(\lambda^{-1}t).
$$

Choose $s \in [0, 1]$ randomly according to the Lebesgue measure on $[0, 1]$ and define $\tilde{N}_{\infty} + s$. Now take $L > 0$ and choose $\lambda \in [0, L]$ randomly according to the normalized Lebesgue measure on $[0, L]$ independently of s and define $e^{\lambda}(\tilde{N}_{\infty} + s)$.

Now let L tend to infinity. We prove in Theorem 1 that the distribution of the random variable $e^{\lambda}(\tilde{N}_{\infty}+s)$ on Θ converges weakly (i.e. in the weak* sense) as L tends to infinity. Let P be the limiting distribution on Θ . Then the stochastic process $(\mathbf{N}_t; t \in \mathbf{R})$ on the probability space (Θ, P) is defined by $\mathbf{N}_t(\omega) = \omega(t)$ for any $\omega \in \Theta$ and $t \in \mathbb{R}$, which is called the **N-process**. Let Θ_0 be the topological support of the measure P.

Let [a, b] be a synchronized interval of level i. We call it **increasing** if $N_{\infty}(a)$ < $N_{\infty}(b)$ and decreasing if $N_{\infty}(a) > N_{\infty}(b)$. We call it left, middle or right if there exists a synchronized interval $[u, v]$ such that $[a, b]$ is equal to $[u, u']$, $[u', v']$ or $[v', v]$, respectively, where we put $u' = (5u + 4v)/9$ and $v' = (4u + 5v)/9$. For example, [0, 1] is the only synchronized interval of level 0, which is increasing. There are 3 synchronized intervals of level 1, namely $[0, 4/9]$, $[4/9, 5/9]$, $[5/9, 1]$, which are increasing, decreasing and increasing, respectively and left, middle and right, respectively.

Let $X = e^{\lambda}(\tilde{N}_{\infty} + s)$ for some $s \in [0, 1]$ and $\lambda \in [0, \infty)$. Note that

$$
e^{\lambda} = (X(\infty) - X(-\infty))^2,
$$

$$
1 - s = e^{-\lambda} \min\{t; \ X(t) = X(\infty)\},
$$

so that λ and s are determined by X. Let [a, b] be a synchronized interval. Then we say that $[(a-s)e^{\lambda}, (b-s)e^{\lambda}]$ is a **synchronized interval of** X. We also say that it is increasing, decreasing, left, middle or right synchronized interval of X if $[a, b]$ is so.

LEMMA 1: (1) $\tilde{N}_{\infty}(t) + \tilde{N}_{\infty}(1 - t) = 1$ for any $t \in \mathbf{R}$.

(2) *Let [a, b] be a synchronized interval. Then we have*

$$
N_{\infty}(t) - N_{\infty}(a) = \xi(b-a)^{1/2} N_{\infty}\left(\frac{t-a}{b-a}\right)
$$

for any $t \in [a, b]$ *, where* ξ *is 1 or -1 according as the interval* $[a, b]$ *is increasing* or decreasing, *respectively.*

(3) There *exists a constant C such* that

$$
|\tilde{N}_{\infty}(t)-\tilde{N}_{\infty}(s)|\leq C|t-s|^{1/2}
$$

for any s, t \in **R**.

(4) *The set K* := { $e^{\lambda}(\tilde{N}_{\infty} + s)$; $s \in [0, 1], \lambda > 0$ } *is relatively compact in* Θ *.*

Remark 1: In Theorem 2, we prove that C in (3) of Lemma 1 can be taken as 1.

Proof: (1) Clear from the definitions of N_{∞} and \tilde{N}_{∞} .

(2) The graph of N_{∞} restricted to the interval [a, b] is the image of the graph of N_{∞} by the affine transformation sending the point $(0,0)$ to $(a, N_{\infty}(a)), (0,1)$ to $(a, N_{\infty}(b)), (1,0)$ to $(b, N_{\infty}(a)),$ and $(1,1)$ to $(b, N_{\infty}(b)).$ Moreover, we already remarked that $N_{\infty}(b) - N_{\infty}(a) = \xi(b-a)^{1/2}$. Our conclusion follows from these properties.

(3) Assume without loss of generality that $0 \le s < t \le 1$ and $t - s < 1/2$, since otherwise, either the required inequality holds with $C = 2$ or it follows from our case by the symmetry or with $s \vee 0$ for s and $t \wedge 1$ for t. Take the maximum n such that there exist either 2 neighboring synchronized intervals $[a, b]$ and $[b, c]$ of level n with $[s, t] \subset [a, c]$. Then we have $t - s > (1/9)((b - a) \wedge (c - b))$, since otherwise, we can take a larger n than this. It follows that

$$
|\tilde{N}_{\infty}(t) - \tilde{N}_{\infty}(s)| = |N_{\infty}(t) - N_{\infty}(s)|
$$

\n
$$
\leq |N_{\infty}(b) - N_{\infty}(a)| + |N_{\infty}(c) - N_{\infty}(b)|
$$

\n
$$
= |b - a|^{1/2} + |c - b|^{1/2}
$$

\n
$$
= 3((b - a) \wedge (c - b))^{1/2}
$$

\n
$$
< 9|t - s|^{1/2},
$$

where we used the fact that either $c - b = 4(b - a)$ or $c - b = (1/4)(b - a)$ holds, since $[a, b]$ and $[c, d]$ are neighboring synchronized intervals of the same level (see (2) of Lemma 2).

(4) By (3), any function f in K satisfies $|f(t) - f(s)| \leq C |t - s|^{1/2}$ for any $s, t \in \mathbf{R}$ together with $f(0) = 0$. This implies that K is relatively compact in Θ . **|**

THEOREM 1: *The N-process introduced above is well defined and has the same distribution as the cocycle F for* $\alpha = 1/2$ *in* Example 8 *in* [1].

Proof: In Example 6 of [1], the weighted substitution (φ, η) on $\{0, 1\}$ was defined as

$$
0 \rightarrow \left(0, \frac{4}{9}\right)\left(1, \frac{1}{9}\right)\left(0, \frac{4}{9}\right),
$$

$$
1 \rightarrow \left(1, \frac{4}{9}\right)\left(0, \frac{1}{9}\right)\left(1, \frac{4}{9}\right).
$$

Then we defined $\Omega := \Omega(\varphi, \eta)$, the set of colored tilings associated to (φ, η) which is strictly ergodic with respect to the addition (**R**-action). Let μ be the unique invariant measure on Ω with respect to the addition, which is also invariant under 324 **T. KAMAE** Isr. J. Math.

the multiplication $(\mathbf{R}_{+}$ -action). Finally, we defined the $1/2$ -homogeneous cocycle F on Ω in Example 8 of [1]. Then

(3)
$$
F(\omega, t) - F(\omega, c) = (-1)^{\sigma} (d - c)^{1/2} N_{\infty} \left(\frac{t - c}{d - c} \right)
$$

for any $\omega \in \Omega$ and $t \in [c, d]$ if there exists a tile S of ω with color σ such that $S = (a, b] \times [c, d)$ for some a, b. For $\omega \in \Omega$, let $F(\omega)$ denote the function $\mathbf{R} \to \mathbf{R}$ such that $F(\omega)(t) = F(\omega, t)$. Then, $F(\omega) \in \Theta$. Let μ_F be the distribution of the random variable $F(\omega)$ with values in Θ defined on the probability space (Ω, μ) .

We want to prove that the process $(N_t; t \in \mathbb{R})$ is well defined and has the distribution μ_F . For this purpose, we prove that the distribution of the random variable $X_L := e^{\lambda}(\tilde{N}_{\infty} + s)$ converges in the weak sense to μ_F as $L \to \infty$, where (s, λ) is a uniformly distributed random variable on $[0, 1] \times [0, L]$. It is sufficient to prove that for any sequence $\{L_n; n = 1, 2, ...\}$ with $\lim_{n\to\infty} L_n = \infty$, there exists a subsequence $\{L'_n\}$ of $\{L_n\}$ with $\lim_{n\to\infty} L'_n = \infty$ such that the distribution of $X_{L'}$ converges to μ_F weakly as n tends to infinity.

Take any sequence $\{L_n; n = 1, 2, ...\}$ with $\lim_{n\to\infty} L_n = \infty$. There exists a subsequence $\{L'_n\}$ of $\{L_n\}$ with $\lim_{n\to\infty} L'_n = \infty$ such that the distribution of $X_{L'_n}$ converges weakly to, say, P' , as n tends to infinity by (4) of Lemma 1. We want to prove that $P' = \mu_F$.

Since Ω is strictly ergodic with respect to the addition ([1]) and the transformation $F: \Omega \to \Theta$ is continuous satisfying $F(\omega + t) = F(\omega) + t$ ($\forall \omega \in \Omega$, $\forall t \in \mathbf{R}$), $F(\Omega)$ is strictly ergodic with respect to the addition. Hence it is sufficient to prove that

(i) P' is invariant under the addition, and

(ii) $P'(F(\Omega)) = 1$.

Let **L** be any bounded continuous funtional on Θ . Take any $t \in \mathbf{R}$ and $\eta \in \mathbf{R}_+$. Then we have

$$
\int \mathbf{L}(\omega+t)dP'(\omega) = \lim_{n \to \infty} \frac{1}{L'_n} \int_0^{L'_n} \int_0^1 \mathbf{L}(e^{\lambda}(\tilde{N}_{\infty}+s)+t))dsd\lambda
$$

$$
= \lim_{n \to \infty} \frac{1}{L'_n} \int_0^{L'_n} \int_{te^{-\lambda}}^{1+te^{-\lambda}} \mathbf{L}(e^{\lambda}(\tilde{N}_{\infty}+s))dsd\lambda
$$

$$
= \int \mathbf{L}(\omega)dP'(\omega),
$$

which proves (i).

Since $F(\Omega)$ is compact ([1]), to prove (ii) it is sufficient to prove that $P'(F(\Omega_M))$ $= 1$ for any $M > 0$, where $F(\Omega)_M$ is the set of $f \in \Theta$ such that there exists $\omega \in \Omega$ satisfying that the restrictions of f and $F(\omega)$ to $[-M, M]$ coincide.

Let $[a_L, b_L]$ be the minimal synchronized interval of X_L , if it exists, containing $[-M, M]$ and let $c_L = 0$ or 1 corresponding to whether $[a_L, b_L]$ is increasing or decreasing. Such an interval *[aL, bL]* exists if and only if

$$
(4) \qquad \qquad [-M,M] \subset [-se^{\lambda},(1-s)e^{\lambda}],
$$

since $[-se^{\lambda}, (1-s)e^{\lambda}]$ is the unique synchronized interval of X of level 0. In this case, take $\omega \in \Omega$ such that there exists a tile S of ω with color c_L and $S = (a, b] \times [a_L, b_L)$ for some *a,b.* Then by Lemma 1 and (3), we have

$$
F(\omega, t) - F(\omega, a_L) = X_L(t) - X_L(a_L)
$$

for any $t \in [-M, M] \subset [a_L, b_L]$. Since $F(\omega, 0) = X_L(0) = 0$, we have $F(\omega, a_L) =$ $X_L(a_L)$ by putting $t = 0$ in the above equality. Hence, we have $F(\omega, t) = X_L(t)$ for any $t \in [-M, M]$. Thus,

$$
(5) \t\t X_L \in F(\Omega)_M
$$

if (4) holds.

Let us estimate the probability that (4) holds.

$$
\Pr([-M, M] \subset [-se^{\lambda}, (1-s)e^{\lambda}]) = \Pr((s \wedge (1-s))e^{\lambda} \ge M)
$$

$$
= \frac{1}{L} \int_{0}^{L} \int_{0}^{1} 1_{(s \wedge (1-s))e^{\lambda} \ge M} ds d\lambda
$$

$$
\ge \frac{1}{L} \int_{0}^{L} (1 - 2Me^{-\lambda}) d\lambda
$$

(6)

$$
\ge 1 - \frac{2M}{L},
$$

which tends to 1 as L tends to infinity.

Since $F(\Omega)_M$ is a closed set we have, by (5) and (6),

$$
P'(F(\Omega)_M)) \ge \lim_{n \to \infty} \Pr(X_{L'_n} \in F(\Omega)_M) = 1,
$$

which proves (ii). \blacksquare

COROLLARY 1: *The following statements hold.*

(1) $\Theta_0 = F(\Omega)$, where Θ_0 is the topological support of the measure P.

(2) For any $\theta \in \Theta_0$ and $a, b \in \mathbb{R}$ with $a < b$, there exist $s \in [0, 1]$ and $\lambda \in [0, \infty)$ such that the restriction of θ to the interval $[a, b]$ coincides with the restriction *of e*^{λ}(\tilde{N}_{∞} + s) *to* [a, b]. *Moreover, in this case,* [a, b] \subset [-se^{λ}, (1 - s)e^{λ}] *holds.*

COROLLARY 2 ([1]): The space Θ_0 is compact and invariant under the addi*tion and multiplication. The addition on* Θ_0 *is strictly ergodic with the unique invariant probability Borel measure P. Moreover, P is invariant under the multiplication. The entropy of the addition is 0. The stochastic process* $(N_t; t \in R)$ *is self-similar with order* 1/2 *and has stationary, strictly ergodic and noncorrelated increments with 0 entropy. Moreover,* $E[N_t] = 0$ and $V[N_t] = C|t|$ for any $t \in \mathbf{R}$, where $C > 0$ is a constant. Furthermore, the process $(\mathbf{N}_t; t \in \mathbf{R})$ is time *reversible.*

Remark *2:* We do not know the exact value of C in Corollary 2. A numerical computation tells us that $C = 0.1243 \cdots$.

3. **Synchronization**

LEMMA 2: (1) For any synchronized intervals I and J, either $I \subset J$, $I \supset J$ or $I^i \cap J^i = \emptyset$ holds, where I^i and J^i are the sets of interior points of I and J, *respectively.*

(2) For any neighboring synchronized intervals $[a, b]$ and $[b, c]$, either $(c - b)/(b - c)$ $a) = (1/4)(4/9)^i$ *for some integer i, or* $(c - b)/(b - a) = 4(4/9)^i$ *for some integer i*, where *i* is the level of $[b, c]$ relative to $[a, b]$. Moreover, one of them is increasing *and the other decreasing.*

Proof: (1) Clear from our construction of the function N_{∞} .

(2) Let $[u, v]$ be the minimal synchronized interval containing $[a, b] \cup [b, c]$ and let $[u, u']$, $[u', v']$, $[v', v]$ be the synchronized intervals of the next level, where $u' = (5u + 4v)/9$, $v' = (4u + 5v)/9$. Then, there are 2 cases:

CASE 1: $[a, b] \subset [u, u']$ and $[b, c] \subset [u', v']$. In this case, we have $b - a = (4/9)^h (4/9)(v - u)$ and $c - b = (4/9)^k (1/9)(v - u)$, so that $(c - b)/(b - a) = (1/4)(4/9)^i$ with $i := k - h$, which is the level of $[b, c]$ relative to $[a, b]$.

CASE 2: $[a, b] \subset [u', v']$ and $[b, c] \subset [v', v]$. In this case, we have $b - a = (4/9)^h (1/9)(v - u)$ and $c - b = (4/9)^k (4/9)(v - u)$, so that $(c-b)/(b-a) = 4(4/9)^i$ with $i := k - h$, which is the level of $[b, c]$ relative to $[a, b]$.

LEMMA 3: For any increasing (decreasing) synchronized interval [a, b], we have $N_{\infty}(a) < N_{\infty}(t) < N_{\infty}(b)$ $(N_{\infty}(a) > N_{\infty}(t) > N_{\infty}(b)$, respectively) for any $t \in (a, b)$. In particular, $0 \leq \tilde{N}_{\infty}(t) \leq 1$ for any $t \in \mathbf{R}$.

Proof. Let $[a, b]$ be an increasing synchronized interval of level n. Then, we remarked in Section 2 that $N_n(a) < N_m(t) < N_n(b)$ or $N_n(a) > N_m(t) > N_n(b)$ for any $t \in (a, b)$ and $m \ge n$. Since $N_n(a) = N_\infty(a) < N_\infty(b) = N_n(b)$, we have $N_{\infty}(a) < N_m(t) < N_{\infty}(b)$ for any $t \in (a, b)$ and $m \geq n$. Take any $t \in (a, b)$. There exists $m \geq n$ and a synchronized interval $[c, d]$ of level m such that $a < c \leq t \leq d < b$. Then,

$$
N_{\infty}(a) < N_{\infty}(c) = N_m(c) \leq N_M(t) \leq N_m(d) = N_{\infty}(d) < N_{\infty}(a)
$$

for any $M \geq m$. Letting $M \to \infty$, we have

$$
N_{\infty}(a) < N_{\infty}(t) < N_{\infty}(a). \qquad \blacksquare
$$

LEMMA 4: (1) For any $0 < t \leq 1$, we have $N_{\infty}(t) \leq t^{1/2}$. The equality holds if *and only if* [0, t] *is a synchronized interval.*

(2) For any $0 \le t < 1$, $1 - N_{\infty}(t) \le (1 - t)^{1/2}$. The equality holds if and only *if [t,* 1] is a *synchronized interval.*

Proof: (1) If $t \in (4/9, 5/9]$, then by Lemma 3,

$$
N_{\infty}(t)/t^{1/2} < N_{\infty}(4/9)/(4/9)^{1/2} = 1.
$$

Let

$$
a = \frac{5}{9} + \left(\frac{4}{9}\right)^3 = \frac{469}{729}, \quad b = \frac{5}{9} + \left(\frac{4}{9}\right)^2 \frac{5}{9} = \frac{485}{729},
$$

$$
c = \frac{5}{9} + \left(\frac{4}{9}\right)^2 = \frac{61}{81}, \quad d = 1 - \left(\frac{4}{9}\right)^2 = \frac{65}{81}.
$$

Then we have

$$
N_{\infty}(a) = \frac{1}{3} + \left(\frac{2}{3}\right)^3 = \frac{17}{27} = \max_{5/9 \le t \le b} N_{\infty}(t),
$$

$$
N_{\infty}(c) = \frac{1}{3} + \left(\frac{2}{3}\right)^2 = \frac{7}{9} = \max_{b \le t \le d} N_{\infty}(t).
$$

Hence,

$$
N_{\infty}(t)/t^{1/2} < N_{\infty}(a)/(5/9)^{1/2} = \frac{17/27}{(5/9)^{1/2}} < 1
$$

for any $t \in (5/9, b]$, and

$$
N_{\infty}(t)/t^{1/2} < N_{\infty}(c)/b^{1/2} = \frac{7/9}{(485/729)^{1/2}} < 1
$$

for any $t \in (b, d]$. If $t \in (d, 1)$, then there exists $k = 2, 3, \ldots$ such that $1 - (4/9)^k$ $< t \leq 1 - (4/9)^{k+1}$, and

$$
N_\infty(t)/t^{1/2}
$$

Therefore, $N_{\infty}(t)/t^{1/2} \ge 1$ holds only if $t = 1$ or $t \in (0, 4/9]$. For $t \in (0, 4/9]$, let $k = 1, 2, ...$ be such that $(4/9)^{k+1} < t \le (4/9)^k$. Then, since $[0, (4/9)^k]$ is a synchronized interval, we have by Lemma 1 that

$$
N_{\infty}(t)/t^{1/2} = N_{\infty}((9/4)^k t)/((9/4)^k t)^{1/2}.
$$

Since $(9/4)^{k}t \in (4/9, 1], N_{\infty}(t)/t^{1/2} \ge 1$ if and only if $(9/4)^{k}t = 1$. That is, $t = (4/9)^k$. This is equivalent to saying that [0, t] is a synchronized interval. Moreover, since the value of $N_{\infty}(t)/t^{1/2}$ at such t is 1, we complete the proof of (1).

(2) follows from (1) by (1) of Lemma 1. \blacksquare

LEMMA 5: For any $a, b \in \mathbf{R}$ with $a < b$, $|\tilde{N}_{\infty}(b) - \tilde{N}_{\infty}(a)| \leq (b-a)^{1/2}$. The *equality holds if and only if [a, b] is a synchronized interval.*

Proof: If $a < b < 0$ or $1 < a < b$, then $|\tilde{N}_{\infty}(b) - \tilde{N}_{\infty}(a)| = 0 < (b - a)^{1/2}$. If $a < 0 < 1 < b$, then $|\tilde{N}_{\infty}(b) - \tilde{N}_{\infty}(a)| = 1 < (b-a)^{1/2}$. If $a < 0 \le b \le 1$, then $|\tilde{N}_{\infty}(b) - \tilde{N}_{\infty}(a)| = \tilde{N}_{\infty}(b) \leq b^{1/2} < (b-a)^{1/2}$ by Lemma 4. If $0 \leq a \leq 1 < b$, then $|\tilde{N}_{\infty}(b) - \tilde{N}_{\infty}(a)| = 1 - \tilde{N}_{\infty}(a) \leq (1 - a)^{1/2} < (b - a)^{1/2}$ by Lemma 4.

Finally, assume that $0 \le a < b \le 1$ and $\tilde{N}_{\infty}(a) = N_{\infty}(a), \ \tilde{N}_{\infty}(b) = N_{\infty}(b)$. Let $[c, d]$ be the minimal synchronized interval containing $[a, b]$. We assume without loss of generality that the interval $[c, d]$ is increasing. Let $c' = (5c+4d)/9$ and $d' = (4c + 5d)/9$. Then, the intervals $[c, c']$, $[c', d']$, $[d', d]$ are synchronized. By the assumption, $[a, b]$ is not contained in any of these intervals. Hence, there are 3 cases:

CASE 1: $a < c' < b < d'$.

CASE 2: $c' \le a < d' < b$, and

CASE 3: $a < c' < d' < b$.

In Case 1, by Lemmas 1, 3 and 4, we have

$$
|N_{\infty}(b) - N_{\infty}(a)| \le (N_{\infty}(c') - N_{\infty}(a)) \vee (N_{\infty}(c') - N_{\infty}(b))
$$

= $(c' - c)^{1/2} N_{\infty} \left(\frac{c' - a}{c' - c}\right) \vee (d' - c')^{1/2} N_{\infty} \left(\frac{b - c'}{d' - c'}\right)$
 $\le (c' - c)^{1/2} \left(\frac{c' - a}{c' - c}\right)^{1/2} \vee (d' - c')^{1/2} \left(\frac{b - c'}{d' - c'}\right)^{1/2}$
= $(c' - a)^{1/2} \vee (b - c')^{1/2}$
 $< (b - a)^{1/2}$.

In Case 2, by Lemmas 1, 3 and 4, we have

$$
|N_{\infty}(b) - N_{\infty}(a)| \le (N_{\infty}(a) - N_{\infty}(d')) \vee (N_{\infty}(b) - N_{\infty}(d'))
$$

= $(d' - c')^{1/2} N_{\infty} \left(\frac{d' - a}{d' - c'}\right) \vee (d - d')^{1/2} N_{\infty} \left(\frac{b - d'}{d - d'}\right)$
 $\le (d' - c')^{1/2} \left(\frac{d' - a}{d' - c'}\right)^{1/2} \vee (d - d')^{1/2} \left(\frac{b - d'}{d - d'}\right)^{1/2}$
= $(d' - a)^{1/2} \vee (b - d')^{1/2}$
 $< (b - a)^{1/2}.$

Let us consider Case 3. Let $A := N_{\infty}(c') - N_{\infty}(a)$ and $B := N_{\infty}(b) - N_{\infty}(d')$. Then we have $A > 0$ and $B > 0$ by Lemma 3. By Lemmas 1 and 4, we have $A^{2} \leq c' - a$ and $B^{2} \leq b - d'$. Moreover, $N_{\infty}(d') - N_{\infty}(c') = -(d' - c')^{1/2}$. Hence,

$$
(N_{\infty}(b) - N_{\infty}(a))^2 = (A + B - (d' - c')^{1/2})^2
$$

= $A^2 + B^2 + (d' - c') + 2AB - 2(A + B)(d' - c')^{1/2}$
(7)
 $\le b - a + 2AB - 2(A + B)(d' - c')^{1/2}$.

Since $A \leq (c'-c)^{1/2} = 2(d'-c')^{1/2}$ and $B \leq (d-d')^{1/2} = 2(d'-c')^{1/2}$, we have

$$
2AB - 2(A + B)(d' - c')^{1/2}
$$

\n
$$
\leq 2(d' - c')^{1/2} \cdot B + A \cdot 2(d' - c')^{1/2} - 2(A + B)(d' - c')^{1/2} = 0
$$

with equality only if $A = (c' - c)^{1/2}$ and $B = (d - d')^{1/2}$. Therefore by (7), we have $|N_\infty(b) - N_\infty(a)| \le (b - a)^{1/2}$ with equality only if $a = c$ and $b = d$ and the interval $[a, b]$ is synchronized. \Box

LEMMA 6: Let $s \in [0,1]$ and $\lambda \in [0,\infty)$ be arbitrary and let $X := e^{\lambda}(\tilde{N}_{\infty} + s)$. (1) *For any interval* $[a, b]$ $(a < b)$ *, we have* $|X(b) - X(a)| \le (b - a)^{1/2}$ *.*

(2) The following statements for an interval $[a, b]$ $(a < b)$ are equivalent to each *other.*

- (i) [a, b] is a *synchronized interval of X.*
- (ii) $X(a) \neq X(b)$ and

$$
X(t) - X(a) = \xi(b-a)^{1/2} \tilde{N}_{\infty} \left(\frac{t-a}{b-a} \right)
$$

for any $t \in [a, b]$, where we set $\xi := \text{sgn}(X(b) - X(a)).$ (iii) $|X(b) - X(a)| = (b - a)^{1/2}$.

Proof: (1) follows from Lemma 5.

(2) It is clear that (ii) implies (iii). That (i) implies (ii) follows from Lemma 1. That (iii) implies (i) follows from Lemma 5.

Let $\omega = (\mathbf{N}_t(\omega); t \in \mathbf{R})$ be an arbitrary sample path of the N-process belonging to Θ_0 . Then by Corollary 1 its restriction to any bounded set is a restriction to the same set of some of X in Lemma 6. An interval $[a, b]$ $(a < b)$ is called a synchronized interval of ω if it is a synchronized interval of a function X as in Lemma 6 which coincides with ω on $[a - 4(b - a), b + 4(b - a)]$. This is well defined since it is independent of the choice of X by Lemma 6. It is called increasing, decreasing, left, middle or right if it is so in X as above. We cannot count the level of a synchronized interval of ω , but we can compare the levels between synchronized intervals. For two synchronized intervals I and J of ω , *J* is said to have level *n* ($n \in \mathbb{Z}$) relative to *I* if there exists *X* as in Lemma 6 which coincides with ω on an interval containing $I \cup J$ and $m \geq 0$ such that I and J are synchronized intervals of X with levels m and $m + n$, respectively. In particular, they are said to have the **same level** if $n = 0$ in the above. If two synchronized intervals I and J of ω satisfy $I \subset J$ and I has level n relative to J, we say that J is the *n*-th **ancester** of I .

THEOREM 2: For any $\omega \in \Theta_0$ and an interval $[a, b]$ $(a < b)$, $|\omega(b) - \omega(a)| \leq$ $(b-a)^{1/2}$ with equality if and only if $[a, b]$ is a synchronized interval of ω . If $[a, b]$ *is a synchronized interval of* ω , then

$$
\omega(t) - \omega(a) = \xi(b-a)^{1/2} N_{\infty} \left(\frac{t-a}{b-a} \right)
$$

for any $t \in [a, b]$ *, where we set* $\xi := \text{sgn}(\omega(b) - \omega(a)).$

Proof: Clear from Lemma 6.

LEMMA 7: For any *t* with $0 < t \leq 1$, $N_{\infty}(t) \geq (1/3)t^{1/2}$.

Proof. Take $k = 0, 1, 2, ...$ such that $(4/9)^{k+1} < t \leq (4/9)^k$. The minimum value of $N_{\infty}(s)$ for $(4/9)^{k+1} < s \leq (4/9)^k$ is $(1/3)(2/3)^k$, attained when $s =$ $(5/9)(4/9)^k$. Therefore, we have

$$
N_{\infty}(t) \ge (1/3) \left(\frac{2}{3}\right)^k = (1/3) \left(\frac{4}{9}\right)^{k/2} \ge (1/3) t^{1/2}.
$$

For any $\omega \in \Theta_0$ and $\varepsilon > 0$, a closed interval I is called a $(1 - \varepsilon)$ -synchronized interval of ω if there exists a synchronized interval J of ω with $|I \cap J|/|I \cup J| \geq$ $1-\varepsilon$.

THEOREM 3: Let $\omega \in \Theta_0$. Then the following statements hold.

(1) For any $\varepsilon > 0$, there exists $\delta > 0$ such that for any interval [a, b] $(a < b)$, if $|\omega(b) - \omega(a)| > (1 - \delta)(b - a)^{1/2}$, then [a, b] is an $(1 - \varepsilon)$ -synchronized interval of ω . In fact, for $\varepsilon < 1/10$, we can take $\delta = \varepsilon/18$.

(2) For any $\delta > 0$, there exists $\varepsilon > 0$ such that for any interval [a, b] $(a < b)$, if $[a, b]$ is an $(1-\varepsilon)$ -synchronized interval of ω , then $|\omega(b)-\omega(a)| > (1-\delta)(b-a)^{1/2}$. *In fact, for* $\delta < 1$ *, we can take* $\varepsilon = (\delta/4)^2$ *.*

(3) If $I = [u, v]$ is a $(1 - \varepsilon)$ -synchronized interval of ω with $0 < \varepsilon < 1/10$, then there *exists a unique solution in u' and v' of the equation:*

(8)
$$
u', v' \in [u - (1/7)(v - u), v + (1/7)(v - u)],
$$

$$
\omega(u') = \min{\omega(t); t \in [u - (1/7)(v - u), v + (1/7)(v - u)]},
$$

$$
\omega(v') = \max{\omega(t); t \in [u - (1/7)(v - u), v + (1/7)(v - u)]}.
$$

Let this solution be u', v'. Then the interval J defined as $J = [u', v']$ *if u'* $\lt v'$ and $J = [v', u']$ if $v' < u'$ is a synchronized interval of ω such that $|I \cap J|/|I \cup J| \geq 1-\varepsilon$.

Proof: (1) Take any ε with $0 < \varepsilon < 1/20$. Assume that [a, b] is not a $(1 - 2\varepsilon)$ synchronized interval of ω . Let $[c, d]$ be a minimal synchronized interval of ω containing $[a + \varepsilon(b - a), b - \varepsilon(b - a)]$. We assume without loss of generality that $[c, d]$ is increasing. Let $c' = (5c + 4d)/9$ and $d' = (4c + 5d)/9$. Then, by the minimality of $[c, d]$ and the assumption that $[a, b]$ is not $(1 - 2\varepsilon)$ -synchronized, we have 6 cases.

CASE 1: $c - \varepsilon(b-a) \leq a \leq c + \varepsilon(b-a)$ and $c' + \varepsilon(b-a) \leq b \leq d'$. CASE 2: $c - \varepsilon(b-a) \le a \le c + \varepsilon(b-a)$ and $d' \le b \le d - \varepsilon(b-a)$.

332 T. KAMAE Isr. J. Math.

CASE 3:
$$
c + \varepsilon(b - a) < a < c' - \varepsilon(b - a)
$$
 and $c' + \varepsilon(b - a) < b \leq d'.$

CASE 4: $c+\varepsilon(b-a) < a < c' - \varepsilon(b-a)$ and $d' < b \le d + \varepsilon(b-a)$.

CASE 5:
$$
c' - \varepsilon(b - a) \le a \le c' + \varepsilon(b - a)
$$
 and $d' + \varepsilon(b - a) < b \le d + \varepsilon(b - a)$.

CASE 6: $c' + \varepsilon(b-a) < a < d' - \varepsilon(b-a)$ and $d' + \varepsilon(b-a) < b \le d + \varepsilon(b-a)$. In Case 1, by Theorem 2 and Lemma 7, we have

$$
|\omega(b) - \omega(a)| = (\omega(c') - \omega(a)) - (\omega(c') - \omega(b))
$$

\n
$$
\leq (c' - a)^{1/2} - (d' - c')^{1/2} N_{\infty} \left(\frac{b - c'}{d' - c'}\right)
$$

\n
$$
\leq (c' - a)^{1/2} - (d' - c')^{1/2} (1/3) \left(\frac{b - c'}{d' - c'}\right)^{1/2}
$$

\n
$$
= (c' - a)^{1/2} - (1/3)(b - c')^{1/2}
$$

\n
$$
\leq (b - a)^{1/2} - (1/3)(\epsilon(b - a))^{1/2}
$$

\n
$$
\leq (b - a)^{1/2} (1 - (\epsilon/9)^{1/2}).
$$

Hence, taking $\delta := (\varepsilon/9)^{1/2} > \varepsilon/9$ for 2ε , we have (1).

In Case 2, by Theorem 2 and Lemma 7, we have

$$
(\omega(b) - \omega(a))^2
$$

= $(A + B - C)^2$
 $\leq (c' - a) + (b - d') + (d' - c') + 2AB - 2AC - 2BC$
= $b - a + 2AB - (A + B)(2/3)(d - c)^{1/2}$
 $\leq b - a + (2/3)(d - c)^{1/2}B + AB - (A + B)(2/3)(d - c)^{1/2}$
 $\leq b - a - A(\omega(d) - \omega(d') - B)$
= $b - a - ((\omega(c') - \omega(c)) - (\omega(a) - \omega(c)))(\omega(d) - \omega(b)))$
 $\leq b - a - ((2/3)(d - c)^{1/2} - |a - c|^{1/2})(1/3)(d - b)^{1/2}$
 $\leq b - a - ((2/3)((1 - 2\varepsilon)(b - a))^{1/2} - (\varepsilon(b - a))^{1/2}) (1/3)(\varepsilon(b - a))^{1/2}$
 $\leq b - a - (1/12)\varepsilon^{1/2}(b - a)$
 $\leq (1 - \varepsilon^{1/2}/12)(b - a),$

where we put $A := \omega(c') - \omega(a), B := \omega(b) - \omega(d')$ and $C := \omega(c') - \omega(d').$ Hence, taking $\delta := \varepsilon^{1/2}/12 > \varepsilon/9$ for 2ε , we have (1).

For Case 3, by Theorem 2 and Lemma 7, we have

$$
(\omega(b) - \omega(a))^2 = (A - B)^2
$$

\n
$$
\leq (c' - a) + (b - c') - 2AB
$$

\n
$$
\leq b - a - 2(1/3)(c' - a)^{1/2}(1/3)(b - c')^{1/2}
$$

\n
$$
\leq b - a - 2((1/3)\varepsilon^{1/2}(b - a)^{1/2})^2
$$

\n
$$
\leq (1 - (2\varepsilon/9))(b - a),
$$

where we put $A := \omega(c') - \omega(a)$ and $B := \omega(c') - \omega(b)$. Hence, taking $\delta := 2\varepsilon/9$ for 2ε , we have (1).

In Case 4, if $d' < b \leq d' + \varepsilon(b-a)$, then there exists b' with $c' + \varepsilon(b-a) < b' < d'$ and $\omega(b') = \omega(b)$. Hence (1) follows from Case 3 since

$$
\begin{aligned} |\omega(b)-\omega(a)|=&|\omega(b')-\omega(a)|\\ \leq& (1-(2\varepsilon/9))(b'-a)\\ \leq& (1-(2\varepsilon/9))(b-a). \end{aligned}
$$

Now assume that $d' + \varepsilon (b - a) < b \le d + \varepsilon (b - a)$. By Theorem 2 and Lemma 7, we have

$$
(\omega(b) - \omega(a))^2 = (A + B - C)^2
$$

\n
$$
\leq (c' - a) + (b - d') + (d' - c') + 2AB - 2AC - 2BC
$$

\n
$$
= b - a + 2AB - (A + B)(2/3)(d - c)^{1/2}
$$

\n
$$
\leq b - a + A(2/3)(d - c)^{1/2} + AB - (A + B)(2/3)(d - c)^{1/2}
$$

\n
$$
\leq b - a - (\omega(c') - \omega(c) - A)B
$$

\n
$$
\leq b - a - (1/3)(a - c)^{1/2}(1/3)(b - d')^{1/2}
$$

\n
$$
\leq b - a - (1/9)\varepsilon(b - a)
$$

\n
$$
= (1 - (\varepsilon/9))(b - a),
$$

where we put $A := \omega(c') - \omega(a)$, $B := \omega(b) - \omega(d')$, and $C := \omega(c') - \omega(d')$. Hence taking $\delta := \varepsilon/9$ for 2ε , we have (1).

Case 5 and Case 6 follow from the previous cases by symmetry.

(2) Let $0 < \varepsilon < 1/10$ and let $[a, b]$ be a $(1-\varepsilon)$ -synchronized interval. Then there exists a synchronized interval $[c, d]$ with $|a - c| < 2\varepsilon(b - a)$ and $|b - d| < 2\varepsilon(b - a)$. Then by Theorem 2, we have

$$
|\omega(b) - \omega(a)| \ge |\omega(d) - \omega(c)| - |\omega(a) - \omega(c)| - |\omega(b) - \omega(d)|
$$

\n
$$
\ge (d - c)^{1/2} - |a - c|^{1/2} - |b - d|^{1/2}
$$

\n
$$
\ge (b - a - \varepsilon(b - a))^{1/2} - 2(2\varepsilon(b - a))^{1/2}
$$

\n
$$
\ge (1 - 4\varepsilon^{1/2})(b - a)^{1/2}.
$$

Thus, for any δ with $0 < \delta < 1$, we have (2) by taking $\varepsilon = (\delta/4)^2$.

(3) Assume without loss of generality that $\omega(a) < \omega(b)$. Then there exists a synchronized interval $J = [u', v']$ such that $|I \cap J|/|I \cup J| \geq 1 - \varepsilon$. Moreover, u', v' is the unique solution of equation (8). \blacksquare

4. Stochastic integral

Let $L = L(\omega)$ be a measurable function of $\omega \in \Theta_0$ taking a value in positve integers. Let ${C_0 < C_1 < ...}$ be a finite or infinite sequence of measurable functions of $\omega \in \Theta_0$ such that $[\zeta_i, \zeta_{i+1}]$ is a synchronized interval of $\omega \in \Theta_0$ for any $i = 0, 1, \ldots$ and ζ_L is defined for any $\omega \in \Theta_0$. We call a sequence $\zeta := \{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$ a synchronized net. If, for an interval $I, I \subset$ $[\zeta_0, \zeta_L]$ holds for any $\omega \in \Theta_0$, we say that ζ covers I. We denote $|| \zeta || := ||$ $\max_{0 \le i \le L-1} (\zeta_{i+1} - \zeta_i) \parallel_{\infty}$. Let C be a sub- σ -field of the probability space (Θ_0, P) . If the above L and $\zeta_{i\wedge L}$ ($i = 0, 1, ...$) are measurable with respect to C, then we say that ζ is **measurable** with respect to C or ζ is C-**measurable**. If $\{Y\}$ is a set of measurable functions on the probability space (Θ_0, P) , then we say that ζ is ${Y}$ -measurable if it is measurable with respect to the σ -field generated by the functions in $\{Y\}$. Let $\zeta = \{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$ and $\eta = \{\eta_0 < \eta_1 < \cdots < \eta_K\}$ be synchronized nets. If for any $\omega \in \Theta_0$, $\zeta \subset \eta$ holds between the sets of values of functions in ζ and η , and if η is measurable with respect to ζ , we say that η is a refinement of ζ .

LEMMA 8: Let *J* be a bounded closed interval with $J = [a, b]$ $(a < b)$. Then, for any bounded closed interval I with $I \subset J^i$ and $\varepsilon > 0$, there exists a synchronized *net* ζ *covering I with* $||\zeta|| < \varepsilon$ which is measurable with respect to $dN|_J$, where $\alpha \mathbf{N} |_{J} := \{ \mathbf{N}_t - \mathbf{N}_s; s,t \in J \}.$

Proof. We may assume that $\varepsilon > 0$ is small enough so that $I \subset [a + 2\varepsilon, b - 2\varepsilon]$. 1ST STEP: Let $\{(u_n, v_n); n = 1, 2, ...\}$ be a countable dense subset of

$$
\{(x,y); -\varepsilon/2 < x < 0 < y < \varepsilon/2, \ \varepsilon/18 \le y - x < \varepsilon/2\}.
$$

Since there exists an synchronized interval [c, d] of ω containing $a+\varepsilon$ with $\varepsilon/18 \leq$ $d - c < \varepsilon/2$, for δ with $0 < \delta < 1/200$, there exists $n = 1, 2, \ldots$ such that

$$
|\omega(a+\varepsilon+v_n)-\omega(a+\varepsilon+u_n)|>(1-\delta)(v_n-u_n)^{1/2}.
$$

Take the minimum *n* as this and define $dN|_J$ -measurable functions $u := a + \varepsilon + u_n$ and $v := a + \varepsilon + v_n$. Then by Theorem 3, $[u, v]$ is $(1 - \delta')$ -synchronized interval of ω for some $\delta' < 1/10$. Let u' and v' be the unique solution of equation (8) in Theorem 3 for this $(1 - \delta')$ -synchronized interval $[u, v]$. Then the functions u' and v' of $\omega \in \Theta$ are measurable with respect to $dN|_J$. We define $\zeta_0 = u'$, $\zeta_1 = v'$ if $u' < v'$ and $\zeta_0 = v'$, $\zeta_1 = u'$ if $v' < u'$.

2ND STEP: Assume that a sequence of $dN|_J$ -measurable functions $\zeta_0 < \zeta_1$ $\cdots < \zeta_k$ is defined so that $\zeta_0 < a + 2\varepsilon$ and $[\zeta_{i-1}, \zeta_i]$ is a synchronized interval with $\zeta_i - \zeta_{i-1} < \varepsilon$ for any $i = 1, 2, ..., k$. This is done for $k = 1$ in the 1st step.

We add ζ_{k+1} to get a longer sequence with this properties. Take the minimum nonnegative integer i such that $4(4/9)^{i}(\zeta_k-\zeta_{k-1}) < \varepsilon$. Since $[\zeta_{k-1},\zeta_k]$ is a synchronized interval, for exactly one of ξ in $\{1/4, 4\}$, $[\zeta_k, \zeta_k + \xi (4/9)^i(\zeta_k - \zeta_{k-1})]$ is a synchronized interval. Define $\zeta_{k+1} = \zeta_k + \xi (4/9)^i(\zeta_k - \zeta_{k-1})$ with this ξ . Since ξ can be chosen in a dN]_J-measurable way by Theorem 2, ζ_{k+1} is measurable with respect to $dN|_J$ such that $\zeta_{k+1} - \zeta_k < \varepsilon$.

FINAL STEP: We prove that we can continue this process until we get ζ_{L+1} $b - 2\varepsilon$. Then, $\zeta := {\zeta_0 < \zeta_1 < \cdots < \zeta_L}$ satisfies the required properties.

The only possible obstruction against this is that ζ_k converges to some point, say $\eta \leq b-\varepsilon$ as $k \to \infty$. We prove that this is impossible. To the contrary, suppose that this is the case. Then, there exists K such that for any $k \geq K$, the i in the description of the 2nd step is chosen as $i = 0$, so that all synchronized intervals $[\zeta_k, \zeta_{k+1}]$ for $k = K, K+1, \ldots$ have the same level. All consecutive $2 \cdot 3^n$ synchronized intervals of the same level contain a synchronized interval of level $-n$ relative to them for any $n = 1, 2, \ldots$ A synchronized interval of level $-n$ relative to the synchronized interval $[\zeta_K, \zeta_{K+1}]$ has length at least $(9/4)^n(\zeta_{K+1} - \zeta_K)$. Therefore, $\zeta_{K+2\cdot3^n} - \zeta_K \geq (9/4)^n(\zeta_{K+1} - \zeta_K)$, which is a contradiction since, letting $n \to \infty$, we have $\eta - \zeta_k$ in the left-hand side and ∞ in the right-hand side. **|**

Let $A(\omega, s)$ be a function on $\Theta_0 \times \mathbf{R}$ which is measurable in ω and continuous in s for any fixed ω . Then for any $a, b \in \mathbf{R}$ with $a < b$, we define a **stochastic** **integral** $\int_a^b A dN_t$ as follows:

(9)
$$
\int_a^b Ad\mathbf{N}_t := \lim_{\substack{\|\zeta\| \to 0 \\ \zeta_0 \to a \\ \zeta_L \to b}} \sum_{i=0}^{L-1} A(\omega, \zeta_i) (\mathbf{N}_{\zeta_{i+1}} - \mathbf{N}_{\zeta_i})
$$

if the limit in the right-hand side exists, where $\zeta = \{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$ is a synchronized net.

THEOREM 4: Let $H(x, s)$ be a real valued function of $x, s \in \mathbb{R}$ which is twice *continuously differentiable in x and once continuously differentiable in s. Then for* any $a < b$, the stochastic integral $\int_a^b H_x(\mathbf{N}_t, t) d\mathbf{N}_t$ exists and is $(H_x)_J \vee d\mathbf{N}_J$ *measurable with* $J = [a, b]$, where $(H_x)_J := \{H(\mathbf{N}_t, t); t \in J\}$. Moreover, the *following* formuh *holds:*

(10)
$$
H(\mathbf{N}_b, b) - H(\mathbf{N}_a, a) = \int_a^b H_x(\mathbf{N}_t, t) d\mathbf{N}_t + \int_a^b (\frac{1}{2} H_{xx}(\mathbf{N}_t, t) + H_s(\mathbf{N}_t, t)) dt.
$$

Proof: The $(H_x)_J \vee dN$] *j*-measurability of the stochastic integral follows from Lemma 8 if it exists, by taking the limit $\zeta_0 \downarrow a$ and $\zeta_L \uparrow b$. Therefore, it suffices to prove the existence of the stochastic integral and formula (10). For a net $\zeta =$ $\{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$, denote

$$
B(\zeta) := \sum_{i=0}^{L-1} H_x(\mathbf{N}_{\zeta_i}, \zeta_i)(\mathbf{N}_{\zeta_{i+1}} - \mathbf{N}_{\zeta_i}).
$$

Then, by the Taylor expansion of H and the continuity of H, H_{xx} and H_s in (x, s) as well as the sample path N_t in t, as $\|\zeta\| \to 0$, $\zeta_0 \to a$ and $\zeta_L \to b$ we have

$$
H(\mathbf{N}_b, b) - H(\mathbf{N}_a, a)
$$

=
$$
\sum_{i=0}^{L-1} (H(\mathbf{N}_{\zeta_{i+1}}, \zeta_{i+1}) - H(\mathbf{N}_{\zeta_i}, \zeta_i)) + o(1)
$$

=
$$
\sum_{i=0}^{L-1} (H_x(\mathbf{N}_{\zeta_i}, \zeta_i)(\mathbf{N}_{\zeta_{i+1}} - \mathbf{N}_{\zeta_i}) + \frac{1}{2} H_{xx}(\mathbf{N}_{\zeta_i}, \zeta_i)(\mathbf{N}_{\zeta_{i+1}} - \mathbf{N}_{\zeta_i})^2
$$

+
$$
H_t(\mathbf{N}_{\zeta_i}, \zeta_i)(\zeta_{i+1} - \zeta_i) + o(\zeta_{i+1} - \zeta_i) + o(1)
$$

=
$$
B(\zeta) + \sum_{i=0}^{L-1} (\frac{1}{2} H_{xx}(\mathbf{N}_{\zeta_i}, \zeta_i) + H_t(\mathbf{N}_{\zeta_i}, \zeta_i))(\zeta_{i+1} - \zeta_i) + o(1)
$$

=
$$
B(\zeta) + \int_a^b (\frac{1}{2} H_{xx}(\mathbf{N}_t, t) + H_t(\mathbf{N}_t, t)) dt + o(1),
$$

where we used the fact that $(N_{\zeta_{i+1}} - N_{\zeta_i})^2 = \zeta_{i+1} - \zeta_i$. Hence, $B(\zeta)$ converges. Thus, the stochastic integral exists and we have (10) .

5. Prediction

Let $H(x, s)$ be a real valued function of $x, s \in \mathbf{R}$ such that

 $(H1)$ H is twice continuously differentiable in x and once continuously differentiable in s, and

(H2) $H_x(x, s) > 0$ for any $x, s \in \mathbb{R}$.

We consider the stochastic process $Y_t = H(\mathbf{N}_t, t)$ $(t \in \mathbf{R})$. Our problem is to predict Y_t for $t \notin J$ from the observation $Y_J := \{Y_t; t \in J\}$, where J is a bounded closed interval with nonempty interior. The function H is considered to be unknown except for the property (H1) and (H2). All the measurable functions of the observation *Yj* we construct in the following do not need any further knowledge on the unknown function H.

THEOREM 5: For any $\omega \in \Theta_0$ and $t \in \mathbf{R}$,

$$
H_x(\mathbf{N}_t, t) = \limsup_{\substack{u, v \to t \\ u < v}} \frac{|Y_v - Y_u|}{(v - u)^{1/2}}.
$$

Let t_1 , t_2 with $t_1 < t_2$ tend to t, attaining the limsup in the right-hand side of *the above equality. Let* $t_1' = (5t_1 + 4t_2)/9$ and $t_2' = (4t_1 + 5t_2)/9$. Then,

$$
H_{xx}(\mathbf{N}_t, t) = \frac{9}{4} \lim \frac{-Y_{t_1} + Y_{t_1'} + Y_{t_2'} - Y_{t_2}}{(t_2 - t_1)^{1/2}},
$$

$$
H_s(\mathbf{N}_t, t) = \frac{3}{8} \lim \frac{Y_{t_1} - 9Y_{t_1'} + 3Y_{t_2'} + 5Y_{t_2}}{(t_2 - t_1)^{1/2}}.
$$

Therefore, if t \in *J, then those quantities H_x(N_t, t), H_{xx}(N_t, t) and H_s(N_t, t) are measurable functions of the observation Yj.*

Proof: Since, by the Taylor expansion of H, we have

$$
Y_v - Y_u = H(\mathbf{N}_v, v) - H(\mathbf{N}_u, u)
$$

= $H_x(\mathbf{N}_t, t)(\mathbf{N}_v - \mathbf{N}_u) + \frac{1}{2}H_{xx}(\mathbf{N}_t, t)(\mathbf{N}_v - \mathbf{N}_u)^2$
+ $H_s(\mathbf{N}_t, t)(v - u) + o(v - u)$

as $u, v \rightarrow t$, by Theorem 2 and (H2), we have

$$
\limsup_{u,v \to t \atop u < v} \frac{|Y_v - Y_u|}{(v - u)^{1/2}} = H_x(\mathbf{N}_t, t) \limsup_{u,v \to t \atop u < v} \frac{|\mathbf{N}_v - \mathbf{N}_u|}{(v - u)^{1/2}}
$$

$$
= H_x(\mathbf{N}_t, t).
$$

By Theorem 3, the lim sup is attained if and only if $u, v \to t$, so that $[u, v]$ is an $(1 - \varepsilon)$ -synchronized interval of ω with $\varepsilon \to 0$. Therefore, the interval $[t_1, t_2]$ as in the statement of our theorem satisfies this condition. Furthermore, since we can approximate the $(1 - \varepsilon)$ -synchronized interval $[t_1, t_2]$ by a synchronized interval close to it and approximate the following quantities for the former by those for the latter with small errors, we may assume that $[t_1, t_2]$ itself is synchronized. Consider the Taylor expansions for

$$
H(\mathbf{N}_{t_2}, t_2') - H(\mathbf{N}_{t_1'}, t_1'),
$$

\n
$$
H(\mathbf{N}_{t_2}, t_2) - H(\mathbf{N}_{t_1'}, t_1'),
$$

\n
$$
H(\mathbf{N}_{t_2}, t_2) - H(\mathbf{N}_{t_1}, t_1),
$$

and using the relations

$$
t_2' - t_1' = (1/9)(t_2 - t_1),
$$

\n
$$
t_2 - t_1' = (5/9)(t_2 - t_1),
$$

\n
$$
N_{t_2'} - N_{t_1'} = -(1/3)\xi(t_2 - t_1)^{1/2},
$$

\n
$$
N_{t_2} - N_{t_1'} = (1/3)\xi(t_2 - t_1)^{1/2},
$$

\n
$$
N_{t_2} - N_{t_1} = \xi(t_2 - t_1)^{1/2},
$$

where $\xi = \text{sgn}(\mathbf{N}_{t_2} - \mathbf{N}_{t_1})$, we have

$$
Y_{t_2'} - Y_{t_1'} = -(1/3)\xi H_x(\mathbf{N}_t, t)(t_2 - t_1)^{1/2} + (1/18)H_{xx}(\mathbf{N}_t, t)(t_2 - t_1)
$$

+ (1/9)H_s(\mathbf{N}_t, t)(t_2 - t_1) + o(t_2 - t_1),

$$
Y_{t_2} - Y_{t_1'} = (1/3)\xi H_x(\mathbf{N}_t, t)(t_2 - t_1)^{1/2} + (1/18)H_{xx}(\mathbf{N}_t, t)(t_2 - t_1)
$$

+ (5/9)H_s(\mathbf{N}_t, t)(t_2 - t_1) + o(t_2 - t_1),

and

$$
Y_{t_2} - Y_{t_1} = \xi H_x(\mathbf{N}_t, t)(t_2 - t_1)^{1/2} + \frac{1}{2} H_{xx}(\mathbf{N}_t, t)(t_2 - t_1)
$$

+ $H_s(\mathbf{N}_t, t)(t_2 - t_1) + o(t_2 - t_1).$

By solving the above linear equation on $H_x(\mathbf{N}_t,t)$, $H_{xx}(\mathbf{N}_t,t)$, $H_s(\mathbf{N}_t,t)$ and letting $t_2 - t_1 \rightarrow 0$, we get the required formulas for $H_{xx}(\mathbf{N}_t, t)$ and $H_t(\mathbf{N}_t, t)$.

It is clear from the above formulas that if t belongs to the interior of J , then the quantities $H_{xx}(\mathbf{N}_t, t)$ and $H_t(\mathbf{N}_t, t)$ are measurable with respect to the observation Y_J . It follows from the continuity that the same result holds for any $t\in J.$ \blacksquare

THEOREM 6: Let I, J be closed intervals with $J = [a, b]$ $(a < b)$ and $\emptyset \neq I^c \subset I$ $I \subset (a, b).$

(1) For any $\delta > 0$, there exists $\varepsilon > 0$ such that for any $t \in J$ and $u, v \in J$ $(t-\varepsilon,t+\varepsilon),$

$$
Y_v - Y_u = H_x(\mathbf{N}_t, t)(\mathbf{N}_v - \mathbf{N}_u) + \Xi
$$

with

$$
|\Xi| \leq \delta(|\mathbf{N}_v - \mathbf{N}_u| + |v - u|^{1/2}).
$$

(2) For any $\varepsilon > 0$, there exists a Y_J-measurable synchronized net covering I *with* $|| \zeta || < \varepsilon$.

 (3) $dN|_J$ is measurable with respect to the observation Y_J . Hence, both terms *in the right-hand side of (10)* are *Yj-measurable.*

Proof: (1) For any given $\delta > 0$, take ε with $0 < \varepsilon < 1$ satisfying (i) $|H_x(x',s') - H_x(x,s)| < \delta$ for any (x, s) and (x', s') with

$$
s, s' \in J', \ |s - s'| < \varepsilon, \ |x|, |x'| \leq (|a'|^{\vee}|b'|)^{1/2} \text{ and } |x - x'| < \varepsilon^{1/2},
$$

(ii) $\sup_{s \in J', |x| \leq (|a'|^{\vee}|b'|)^{1/2}} |H_s(x, s)| \cdot (2\varepsilon)^{1/2} < \delta,$ where $a' = a - 1$, $b' = b + 1$, $J' := [a', b']$. Then for any $t \in J$ and $u, v \in J$ $(t - \varepsilon, t + \varepsilon),$

$$
Y_v - Y_u = H(\mathbf{N}_v, v) - H(\mathbf{N}_u, u)
$$

= $(H(\mathbf{N}_v, v) - H(\mathbf{N}_v, u)) + (H(\mathbf{N}_v, u) - H(\mathbf{N}_u, u))$
= $H_s(\mathbf{N}_v, t')(v - u) + H_x(x', u)(\mathbf{N}_v - \mathbf{N}_u)$
= $H_x(\mathbf{N}_t, t)(\mathbf{N}_v - \mathbf{N}_u) + \Xi$

with

$$
\Xi := H_s(\mathbf{N}_v,t')(v-u) + (H_x(x',u) - H_x(\mathbf{N}_t,t))(\mathbf{N}_v - \mathbf{N}_u),
$$

where t' and x' satisfy $|t'-t| < \varepsilon$ and $|x'-N_t| < \varepsilon^{1/2}$. Then using (i) and (ii), we have

$$
|\Xi| \leq |H_s(\mathbf{N}_v, t')||v - u| + |H_x(x', u) - H_x(\mathbf{N}_t, t)||\mathbf{N}_v - \mathbf{N}_u|
$$

\n
$$
\leq |H_s(\mathbf{N}_v, t')|(2\varepsilon)^{1/2}|v - u|^{1/2} + \delta|\mathbf{N}_v - \mathbf{N}_u|
$$

\n
$$
\leq \delta(|\mathbf{N}_v - \mathbf{N}_u| + |v - u|^{1/2}).
$$

(2) Take sufficiently small $\delta > 0$ determined finally in the following 2nd step. At this moment, we assume that

(11)
$$
0 < \delta < \inf_{t \in J, \; |x| \leq (|a|^\vee |b|)^{1/2}} H_x(x,t)/1200.
$$

We may assume that $\epsilon > 0$ is small enough so that the statement (1) holds with this δ and $I \subset [a + 2\varepsilon, b - 2\varepsilon]$. We use a similar construction as in the proof of Lemma 8.

1ST STEP: Let $\{(u_n, v_n); n = 1, 2, ...\}$ be a countable dense subset of

$$
\{(x,y); -\varepsilon/2 < x < 0 < y < \varepsilon/2, \ \varepsilon/18 \leq y - x < \varepsilon/2\}.
$$

There exists a synchronized interval [c, d] of ω containing $t := a + \varepsilon$ with $\varepsilon/18 \leq$ $d - c < \varepsilon/2$. Then, we have by (1)

$$
|Y_d - Y_c| \ge (H_x(\mathbf{N}_t, t) - \delta)|\mathbf{N}_d - \mathbf{N}_c| - \delta(d - c)^{1/2}
$$

= $(H_x(\mathbf{N}_t, t) - \delta)(d - c)^{1/2} - \delta(d - c)^{1/2}$
= $(H_x(\mathbf{N}_t, t) - 2\delta)(d - c)^{1/2}.$

Hence, there exists $n = 1, 2, \ldots$ such that

$$
|Y_{t+v_n} - Y_{t+u_n}| > (H_x(\mathbf{N}_t, t) - 3\delta)(v_n - u_n)^{1/2}.
$$

Take the minimum *n* as this and define functions $u := t + u_n$ and $v := t + v_n$, which are Y_J -measurable by Theorem 5.

Since as above we have

$$
(H_x(\mathbf{N}_t,t)-3\delta)(v-u)^{1/2} < |Y_v - Y_u|
$$

\n
$$
\leq (H_x(\mathbf{N}_t,t)+\delta)|\mathbf{N}_v - \mathbf{N}_u| + \delta(v-u)^{1/2},
$$

we have by (11) that

$$
|\mathbf{N}_v - \mathbf{N}_u| > (1 - 1/200)(v - u)^{1/2}.
$$

Then by Theorem 3, $[u, v]$ is a $(1 - 1/11)$ -synchronized interval of ω . Let u' and v' be the unique solution of equation (8) in Theorem 3 for this $(1 - 1/11)$ synchronized interval $[u, v]$.

We prove that u' , v' is also the unique solution of the equation

(12)
$$
u', v' \in [u - (1/7)(v - u), v + (1/7)(v - u)],
$$

$$
Y_{u'} = \min\{Y_s; s \in [u - (1/7)(v - u), v + (1/7)(v - u)]\},
$$

$$
Y_{v'} = \max\{Y_s; s \in [u - (1/7)(v - u), v + (1/7)(v - u)]\}.
$$

Take any $s \in [u - (1/7)(v - u), v + (1/7)(v - u)]$ with $s \neq u'$. Then by Lemma

7, $\mathbf{N}_s - \mathbf{N}_{u'} \ge (1/3)|s - u'|^{1/2}$. Therefore as above, we have

$$
Y_s - Y_{u'} \ge (H_x(t, \mathbf{N}_t) - \delta)(\mathbf{N}_s - \mathbf{N}_{u'}) - \delta|s - u'|^{1/2}
$$

\n
$$
\ge (H_x(\mathbf{N}_t, t) - \delta)(1/3)|s - u'|^{1/2} - \delta|s - u'|^{1/2}
$$

\n
$$
= (H_x(\mathbf{N}_t, t) - 4\delta)(1/3)|s - u'|^{1/2}
$$

\n
$$
\ge (1200 - 4)\delta(1/3)|s - u'|^{1/2},
$$

so that u' is the unique solution of equation (12). Similarly, v' is the unique solution of equation (12). Thus, u' and v' are Y_J-measurable functions on $\omega \in \Theta$.

We define $\zeta_0 = u'$, $\zeta_1 = v'$ if $u' < v'$ and $\zeta_0 = v'$, $\zeta_1 = u'$ if $v' < u'$.

2ND STEP: Assume that a sequence of Y_J -measurable functions $\zeta_0 < \zeta_1 < \cdots <$ ζ_k is defined so that $\zeta_0 < a + 2\varepsilon$ and $[\zeta_{i-1}, \zeta_i]$ is a synchronized interval with $\zeta_{i-1} - \zeta_i < \varepsilon$ for any $i = 1, 2, \ldots, k$. This is done for $k = 1$ in the 1st step.

We add ζ_{k+1} to get a longer sequence with these properties. Take the minimum nonnegative integer i such that $4(4/9)^{i}(\zeta_{k} - \zeta_{k-1}) < \varepsilon$. Since $[\zeta_{k-1}, \zeta_{k}]$ is a synchronized interval, for exactly one of ξ in $\{1/4, 4\}$, $[\zeta_k, \zeta_k + \xi(4/9)^i(\zeta_k - \zeta_{k-1})]$ is a synchronized interval. Define $\zeta_{k+1} = \zeta_k + \xi (4/9)^i(\zeta_k - \zeta_{k-1})$ with this ξ .

What we have to prove is that ξ is chosen in a Y_J-measurable way. Let $\xi \in$ $\{1/4, 4\}$ be such that $[t, \zeta]$ is a synchronized interval and let $\xi' \in \{1/4, 4\}$ be $\xi' \neq \xi$, so that $[t, \zeta']$ is not a synchronized interval, where we put $t := \zeta_k$, $\zeta := t + \xi (4/9)^{i} (t - \zeta_{k-1})$ and $\zeta' = t + \xi' (4/9)^{i} (t - \zeta_{k-1})$. Let $[t, \zeta'']$ be the minimal synchronized interval containing $[t, \zeta']$. Then, we can prove that there exists $p > 0$ such that $\left(\frac{4}{9}\right) + p < \left(\frac{\zeta'}{-t}\right)/\left(\frac{\zeta''-t}{t}\right) < 1-p$. Therefore, by Theorem 2, there exists q with $1/2 < q < 1$ such that

$$
|\mathbf{N}_{\zeta'} - \mathbf{N}_t| < q|\zeta' - t|^{1/2}
$$

while

$$
|\mathbf{N}_{\zeta}-\mathbf{N}_{t}|=|\zeta-t|^{1/2}.
$$

Then, as we proved in the 1st step, we have

$$
|Y_{\zeta'} - Y_t| \leq (H_x(\mathbf{N}_t, t) + \delta) |\mathbf{N}_{\zeta'} - \mathbf{N}_t| + \delta (\zeta' - t)^{1/2}
$$

$$
\leq (H_x(\mathbf{N}_t, t) + 3\delta) q (\zeta' - t)^{1/2},
$$

while

$$
|Y_{\zeta} - Y_t| \ge (H_x(\mathbf{N}_t, t) - \delta) |\mathbf{N}_{\zeta} - \mathbf{N}_t| - \delta(\zeta - t)^{1/2}
$$

= $(H_x(\mathbf{N}_t, t) - 2\delta)(\zeta - t)^{1/2}.$

Therefore, by choosing small $\delta > 0$, we have

$$
|Y_{\zeta'} - Y_t|/(\zeta'-t)^{1/2} \leq H_x(\mathbf{N}_t, t)(1+2q)/3,
$$

$$
|Y_{\zeta} - Y_t|/(\zeta-t)^{1/2} \geq H_x(\mathbf{N}_t, t)(2+q)/3,
$$

so that we can distinguish these 2 cases by the observation Y_j . Hence, ξ is Y_J -measurable.

Thus, the function ζ_{k+1} on $\omega \in \Theta$ is Y_j-measurable such that $[\zeta_k, \zeta_{k+1}]$ is a synchronized interval with $\zeta_{k+1} - \zeta_k < \varepsilon$.

FINAL STEP: We continue this process until we get $\zeta_{L+1} > b - \varepsilon$. Then, $\zeta :=$ $\{\zeta_0 < \zeta_1 < \cdots < \zeta_L\}$ satisfies the required properties. This can be done by the same reasoning as in the final step of the proof of Lemma 8.

(3) Let $\zeta = {\zeta_0 < \zeta_1 < \cdots < \zeta_L}$ be a Y_I-measurable synchronized net covering J. If necessary, we repeat the division of a synchronized interval $[\zeta_i,\zeta_{i+1}]$ by $[\zeta_i,\zeta_i'], [\zeta_i',\zeta_{i+1}'], [\zeta_{i+1}',\zeta_{i+1}]$ with $\zeta_i' = (5\zeta_i + 4\zeta_{i+1})/9$ and $\zeta'_{i+1} = (4\zeta_i + 5\zeta_{i+1})/9$; we may assume that there exists $[\zeta_i, \zeta_{i+1}] \subset I^i$ such that $\zeta_{i+1} - \zeta_i$ is sufficiently small so that $Y_{\zeta_{i+1}} - Y_{\zeta_i}$ has the same sign as $N_{\zeta_{i+1}} - N_{\zeta_i}$. Then, we know from the observation Y_I whether the synchronized interval $[\zeta_i,\zeta_{i+1}]$ is increasing or decreasing. Since the synchronized intervals $[\zeta_j,\zeta_{j+1}]$'s are increasing and decreasing alternatively, we know $\xi =$ $sgn(N_{j+1} - N_j)$ for all $j = 0, 1, \ldots, L-1$. Since

$$
\mathbf{N}_t - \mathbf{N}_{\zeta_j} = \xi (t - \zeta_j)^{1/2} N_\infty \Big(\frac{t - \zeta_j}{\zeta_{j+1} - \zeta_j} \Big)
$$

for any $t \in [\zeta_j, \zeta_{j+1}]$ by Theorem 2, we get $dN|_J$ from the observation Y_I , hence by Y_J considering the limit.

LEMMA 9: (1) Let $\{\zeta_0 < \zeta_0 < \zeta_1 < \cdots < \zeta_L\}$ be a synchronized net. Let $(\zeta_{i+1} - \zeta_i)/(\zeta_i - \zeta_{i-1}) = \xi(4/9)^j$ with $\xi \in \{1/4, 4\}$ and $j \in \mathbb{Z}$ for some $i =$ $1, 2, \ldots, L-1$ and $\omega \in \Theta$. If $j > 0$, then for $\eta := \zeta_i + \xi(\zeta_i - \zeta_{i-1}), [\zeta_i, \eta]$ *is a synchronized interval of* $\omega \in \Theta_0$, and if $\eta \leq \zeta_L$, then there exists n with $i+1 < n \leq L$ such that $\eta = \zeta_n$. If $j < 0$, then for $\eta := \zeta_i - \xi(\zeta_{i+1} - \zeta_i)$, $[\eta, \zeta_i]$ *is a synchronized interval of* $\omega \in \Theta_0$, and if $\eta \geq \zeta_0$, then there exists n with $0 \leq n < i-1$ such that $\eta = \zeta_n$.

(2) For any neighboring synchronized intervals $[a, b]$, $[b, c]$ and $[c, d]$ of $\omega \in \Theta_0$, *if* $(c - b)/(b - a) = 1/4$ *and* $(d - c)/(c - b) = 4$, *then* [a, d] *is a synchronized interval of* ω *.*

(3) For any neighboring synchronized intervals [a, b], [b, c] and [c, d] of $\omega \in \Theta_0$, *if* $(c - b)/(b - a) = 1/4$ *and* $(d - c)/(c - b) = 1/4$, *then* $[a - (9/4)(b - a), b]$ *and* $[b, b + (9/4)(c - b)]$ are *synchronized intervals of* ω .

(4) For any neighboring synchronized intervals $[a, b]$, $[b, c]$ and $[c, d]$ of $\omega \in \Theta_0$, *if* $(c - b)/(b - a) = 4$ *and* $(d - c)/(c - b) = 4$, *then* $[b - (9/4)(c - b), c]$ *and* $[c, c + (9/4)(d - c)]$ are *synchronized intervals of* ω .

Proof: (1) Assume that $j > 0$. Let K be the nearest common ancester of $[\zeta_{i-1}, \zeta_i]$ and $[\zeta_i, \zeta_{i+1}]$. Let $[\zeta_{i-1}, \zeta_i]$ have level k relative to K. Then by (2) of Lemma 2, $[\zeta_i, \zeta_{i+1}]$ has level $k+j$ relative to K. Since $k > 0$, the j-th ancester of $[\zeta_i, \zeta_{i+1}]$, is neighboring to $[\zeta_{i-1}, \zeta_i]$. Let it be $[\zeta_i, \eta]$. Then, $\eta - \zeta_i = \xi(\zeta_i - \zeta_{i-1})$. If $\eta \leq \zeta_L$, then by (1) of Lemma 2, there exists n with $i + 1 < n \leq L$ such that $\eta = \zeta_n$. The proof for the case $j < 0$ is similar.

(2) Let K be the nearest common ancester of [a, b], [b, c] and [c, d]. It is sufficient to prove that $K = [a, d]$. Suppose to the contrary that $K \neq [a, d]$. Then, $[b, c]$ has level $j > 1$ relative to K and is not middle. Assume that it is left. Then, $[c, d]$ is middle since $[b, c]$ and $[c, d]$ have the same level. Thus $(d - c)/(c - b) = 1/4$, contradicting the assumption. If [b, c] is right, we have $(c - b)/(b - a) = 4$, contradicting the assumption.

(3) Since neither $[a, b]$ nor $[b, c]$ is middle by the assumption, we have that $[a, b]$ is right and $[b, c]$ is left. Then, the first ancestor of $[a, b]$ is $[b - (9/4)(b - a), b]$ and the first ancestor of $[b, c]$ is $[b, b + (9/4)(c - b)].$

(4) Let K be the nearest common ancester of $[a,b]$ and $[b,c]$. If K is not the first ancestor of $[a, b]$ and $[b, c]$, then $[b, c]$ is left, which contradicts $(d - c)/(c - b) = 4$. Hence, K is the first ancestor of [a, b] and [b, c]. This implies that $K = [c - (9/4)(c - b), c]$ and that K is not an ancestor of $[c, d],$ since $(c - b)/(b - a) = 4$. Therefore, the nearest common ancestor of $[b, c]$ and $[c, d]$ is not their first ancestor. Thus, $[c, d]$ is left and the first ancestor of $[c, d]$ is $[c, c + (9/4)(d - c)].$

Let $\zeta = {\zeta_0 < \zeta_1 < \cdots < \zeta_L}$ and $\eta = {\eta_0 < \eta_1 < \cdots < \eta_M}$ be synchronized nets such that η is measurable with respect to ζ . We say that η is a reduction of ζ if $\eta_0 \leq \zeta_0 < \zeta_L \leq \eta_M$ and $\{\eta_1 < \eta_2 < \cdots < \eta_{M-1}\} \subset \{\zeta_1 < \zeta_2 < \cdots < \zeta_{L-1}\}$ holds.

THEOREM 7: *For any Y_J*-measurable synchronized net $\zeta = {\zeta_0 < \zeta_1 < \cdots < \zeta_L}$, *there exists a reduction of it consisting at most of 3 synchronized intervals with* the *same level*

344 **T. KAMAE** Isr. J. Math.

Proof: Let $\eta = \{\eta_0 < \eta_1 < \cdots < \eta_M\}$ be a reduction of ζ with the smallest number of intervals M. If the levels of the synchronized intervals contained in it are not the same, then there exists $i = 0, 1, \ldots, M - 1$ such that

$$
(\eta_{i+1} - \eta_i)/(\eta_i - \eta_{i-1}) = \xi(4/9)^j \quad \text{with } \xi \in \{1/4, 4\} \text{ and } j \neq 0.
$$

If $j > 0$, then by Lemma 9, $[\eta_i, \eta_i + \xi(\eta_i - \eta_{i-1})]$ is a synchronized interval and either there exists n with $i + 1 < n \leq M$ such that $\eta_n = \eta_i + \xi(\eta_i - \eta_{i-1})$ or $\eta_i + \xi(\eta_i - \eta_{i-1}) > \eta_L$. In the former case, we have a further reduction of ζ , $\{\eta_0 < \eta_1 < \cdots < \eta_i < \eta_m < \cdots < \eta_M\}$ with a number of intervals less than M , contradicting the assumption on M . In the latter case, we have a futher reduction of ζ , $\eta' := {\eta_0 < \eta_1 < \cdots < \eta_i < \eta_i + \xi(\eta_i - \eta_{i-1})}$, which has a number of intervals at most M . By the assumption on M , it is exactly M and $i=M-1$.

If $j < 0$, then by Lemma 9, $[\eta_i - \xi(\eta_{i+1} - \eta_i), \eta_i]$ is a synchronized interval and either there exists n with $0 \le n < i-1$ such that $\eta_n = \eta_i - \xi(\eta_{i+1} - \eta_i)$ or $\eta_i - \xi(\eta_{i+1} - \eta_i) < \eta_0$. In the former case, we have a further reduction of ζ , ${m_0 < n_1 < \cdots < n_n < n_i < \cdots < n_M}$ with a number of intervals less than M , contradicting the assumption on M . In the latter case, we have a futher reduction of ζ , $\eta' := {\eta_i - \xi(\eta_{i+1} - \eta_i) < \eta_i < \cdots < \eta_M}$, which has a number of intervals at most M. By the assumption on M, it is exactly M and $i = 1$.

If the levels of the synchronized intervals contained in η' are not the same, we repeat the above procedure to get finally a futher reduction of ζ such that it has a number M of synchronized intervals with the same level. Hence, we may assume that $\eta = \{\eta_0 < \eta_1 < \cdots < \eta_M\}$ is a reduction of ζ which has the smallest number of intervals M with the same level.

Suppose that $M \geq 4$. Then, in the sequence of $(\eta_{i+1} - \eta_i)/(\eta_i - \eta_{i-1})$ $(i = 1, 2, \ldots, M - 1)$, there exists $i = 1, 2, \ldots, M - 2$ such that the combination $((\eta_{i+1} - \eta_i)/(\eta_i - \eta_{i-1}), (\eta_{i+2} - \eta_{i+1})/(\eta_{i+1} - \eta_i))$ is either (1/4, 4), (1/4, 1/4) or $(4, 4)$. Then by Lemma 9, we find a further reduction of ζ with a smaller number of intervals, contradicting the assumption on M. Hence $M \leq 3$.

THEOREM 8: For any bounded closed interval $J = [a, b]$ with $a < b$, there exists *measurable functionals* $\tau: C(J) \to [0, \infty)$ *and* $G: C(J) \to \Theta$ *such that*

- (1) $Pr[G(Y_J)(t) = N_{b+t} N_b | t \leq \tau(Y_J)] = 1$ for any $t > 0$, and
- (2) $Pr[\tau(Y_J) < t] \le 9t/(4B)$ for any $t > 0$,

where $C(J)$ is the space of continuous functions on J and we set $B := (b-a)/21$.

Proof: By Theorem 6, there exists a Y_J-measurable synchronized net covering

[a, b]. Taking its reduction obtained in Theorem 7, we get a Y_J -measurable synchronized net $\eta := {\eta_0 < \eta_1 < \cdots < \eta_M}$ satisfying

- (i) $M \leq 3$,
- (ii) the synchronized intervals in η have the same level, and
- (iii) $\eta_0 \leq a < b \leq \eta_M$.

Define $\tau = \tau(Y_J) := \eta_M - b$ and

$$
G(Y_J)(t) := \begin{cases} 0, & t < 0, \\ \mathbf{N}_{b+t} - \mathbf{N}_b, & 0 \leq t \leq \tau, \\ \mathbf{N}_{b+\tau} - \mathbf{N}_b, & t > \tau. \end{cases}
$$

Then (1) is clear from the definitions of τ and G together with (3) of Theorem 6. Let $b \in [\eta_i, \eta_{i+1}]$. Then

$$
\eta_{i+1} - \eta_i \geq (\eta_M - \eta_0)/(1 + 4 + 4^2) \geq (b - a)/21 = B.
$$

Let $[u, v]$ be the minimal synchronized interval containing b with $v - u \geq B$. Since $[u, v] \subset [\eta_i, \eta_{i+1}],$ we have $\tau' := v - b \leq \eta_{i+1} - b \leq \eta_M - b = \tau$.

Take $t > 0$ with $t \leq (4/9)B$ and let $n = [B/t]$. If $\tau'(\omega) \in [0, t)$, then $\tau'(\omega - it) \in$ $[jt, (j+1)t)$ for any $j = 0, 1, ..., n-1$. Hence, for any $j = 0, 1, ..., n-1$, we have

$$
\Pr(\tau'(\omega) \in [0, t)) \leq \Pr(\tau'(\omega - jt) \in [jt, (j+1)t)) = \Pr(\tau'(\omega) \in [jt, (j+1)t)),
$$

where we used the fact that the probability measure P is invariant under the addition. Therefore, we have $Pr(\tau' < t) \leq 1/n$, since

$$
n \Pr(\tau' \in [0, t)) \le \sum_{i=0}^{n-1} P(\tau' \in [jt, (j+1)t)) \le \Pr(\tau' \in [0, B)) \le 1.
$$

Thus we have (2), since $Pr(\tau < t) \leq Pr(\tau' < t) \leq 1/n \leq 9t/(4B)$ for any $t < 4B/9$. For $t \geq 4B/9$, (2) holds trivially since $9t/(4B) \geq 1$.

We construct a predictor for Y_c with $c > b$ based on the observation Y_J , where $J = [a, b]$. We use $G(Y_J)(c)$ to estimate $N_c - N_b$. By Theorem 8, if $c - b \leq \tau(Y_J)$, then the estimation is exact. To estimate $Y_c = H(\mathbf{N}_c, c)$, we use the Taylor expansion at (\mathbf{N}_b, b) with $G(Y_J)(c)$ for $\mathbf{N}_c - \mathbf{N}_b$:

$$
\hat{Y}_c := Y_b + H_x(\mathbf{N}_b, b)G(Y_J)(c) + \frac{1}{2}H_{xx}(\mathbf{N}_b, b)G(Y_J)(c)^2 + H_s(\mathbf{N}_b, b)(c - b).
$$

Note that \hat{Y}_c is a measurable function of the observation Y_J by Theorem 6. The value can be calculated based on the observation without using any further information on the unknown function H than $(H1)$ and $(H2)$.

THEOREM 9: *We have*

$$
E[(\hat{Y}_c - Y_c)^2] = o((c - b)^2) + O\left(\frac{(c - b)^2}{b - a}\right)
$$

as $c \downarrow b$ with $C(b)$ in (2) in Section 1 as the constant in $O($).

Proof: Since

$$
Y_c = Y_b + H_x(\mathbf{N}_b, b)G(Y_J)(c)
$$

+ $\frac{1}{2}H_{xx}(\mathbf{N}_b, b)G(Y_J)(c)^2 + H_s(\mathbf{N}_b, b)(c - b) + o(c - b),$

 $\hat{Y}_c - Y_c = o(c - b)$ holds if $c - b \leq \tau(Y_J)$. If otherwise, $\hat{Y}_c - Y_c = O((c - b)^{1/2})$ since $|G(Y_J)(c)| \le (c-b)^{1/2}$, $|\mathbf{N}_c - \mathbf{N}_b| \le (c-b)^{1/2}$ and

$$
|G(Y_J)(c) - (\mathbf{N}_c - \mathbf{N}_b)| = |\mathbf{N}_{\tau(Y_J)} - \mathbf{N}_b| \le (c - b)^{1/2},
$$

so that

$$
(\hat{Y}_c - Y_c)^2 \le (1 + \delta) \sup_{|x| \le |b|^{1/2}} |H_x(x, b)|^2 (c - b)
$$

for any $\delta > 0$ as $c \to b$. Since by Theorem 8, $Pr[\tau(Y_J) < c - b] \leq 48(c - b)/(b - a)$, we have

$$
E[(\hat{Y}_c - Y_c)^2] = E[(\hat{Y}_c - Y_c)^2 | \tau(Y_J) \ge c - b] Pr[\tau(Y_J) \ge c - b]
$$

+
$$
E[(\hat{Y}_c - Y_c)^2 | \tau(Y_J) < c - b] Pr[\tau(Y_J) < c - b]
$$

$$
\le o(c - b)^2 + O\left(\frac{(c - b)^2}{b - a}\right)
$$

with $C(b)$ in (2) as the constant in $O($ $)$.

ACKNOWLEDGEMENT: The author thanks the anonymous referee for his suggestions and encouragement.

References

- [1] Teturo Kamae, *Linear expansions, strictly ergodic homogeneous cocycles and fractals,* Israel Journal of Mathematics 106 (1998), 313-337.
- [2] Benoit B. Mandelbrot, *A multifractal walk down Wall Street*, Scientific American, February, 1999.